Advertisement

Colloid Journal

, Volume 76, Issue 4, pp 465–470 | Cite as

Physicochemical and electrorheological properties of titanium dioxide modified with metal oxides

  • A. N. MurashkevichEmail author
  • O. A. Alisienok
  • I. M. Zharskii
  • E. V. Korobko
  • N. A. Zhuravskii
  • Z. A. Novikova
Article

Abstract

The properties of electrorheological fluids containing dispersed phase of titanium dioxide nanoparticles prepared via the sol-gel method and modified with metal oxides have been studied. Titanium dioxide has the anatase structure with crystallite sizes of 8–10 nm and a specific surface area of 90–140 m2/g. It has been found that the magnitude of the electrorheological response of the filler is determined by the specific surface area and the content of a modifying component. The strongest electrorheological response has been revealed for titanium dioxide modified with aluminum oxide at an Al content of 6.5–7.0 mol % relative to TiO2.

Keywords

Shear Rate Colloid Journal Large Specific Surface Area HMTA Filler Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhao, X.P., Yin, J.B., Xiang, L.Q., and Zhao, Q., J. Mater. Sci., 2002, vol. 37, p. 2569.CrossRefGoogle Scholar
  2. 2.
    Wang, B.X., Zhao, X.P., Zhao, Y., and Ding, Ch.L., Compos. Sci. Technol., 2007, vol. 67, p. 3031.CrossRefGoogle Scholar
  3. 3.
    Kraev, A.S., Agafonov, A.V., Davydova, O.I., Nefedova, T.A., Trusova, T.A., and Zakharov, A.G., Colloid J., 2007, vol. 69, p. 620.CrossRefGoogle Scholar
  4. 4.
    Tang, H., He, J., and Persello, J., Particuology, 2010, vol. 8, p. 442.CrossRefGoogle Scholar
  5. 5.
    Strengl, V., Bakardjieva, S., and Murafa, N., Mater. Chem. Phys., 2009, vol. 114, p. 217.CrossRefGoogle Scholar
  6. 6.
    Chubukov, P.A., Denisov, N.N., Gorenberg, A.A., et al., Zh. Fiz. Khim., 2008, vol. 82, p. 1765.Google Scholar
  7. 7.
    Shi, D., Zheng, D., Khu, Ya., and Zhao, Yu., Kinet. Katal., 2008, vol. 49, p. 293.CrossRefGoogle Scholar
  8. 8.
    Sedneva, T.A., Lokshin, E.P., Belikov, M.L., and Kalinnikov, V.T., Dokl. Phys. Chem., 2012, vol. 443, p. 57.CrossRefGoogle Scholar
  9. 9.
    Bouslama, M., Amamra, M.C., Jia, Z., et al., ACS Catal., 2012, vol. 2, p. 1884.CrossRefGoogle Scholar
  10. 10.
    Jung, K.Y. and Park, S.B., Korean J. Chem. Eng., 2010, vol. 41, p. 520.Google Scholar
  11. 11.
    Qiao, Y., Yin, J., and Zhao, X., Smart Mater. Struct., 2007, vol. 16, p. 332.CrossRefGoogle Scholar
  12. 12.
    Liu, X., Guo, J., Cheng, Y., et al., Rheol. Acta, 2010, vol. 49, p. 837.CrossRefGoogle Scholar
  13. 13.
    Korobko, E.V., Eschenko, L.S., Bedik, N.A., and Zhuk, G.M., Int. J. Mod. Phys. B, 2007, vol. 21, p. 3841.CrossRefGoogle Scholar
  14. 14.
    Agafonov, A.V., Nefedova, T.A., and Davydova, O.I., Colloid J., 2008, vol. 70, p. 535.CrossRefGoogle Scholar
  15. 15.
    Kraev, A.S., Agafonov, A.V., Nefedova, T.A., et al., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2007, vol. 50, no. 6, p. 35.Google Scholar
  16. 16.
    Malykh, T.G., Sharygin, L.M., Tret’yakov, S.Ya., et al., Neorg. Mater., 1980, vol. 16, p. 1857.Google Scholar
  17. 17.
    Kim, D.S. and Kwak, S.Y., J. Appl. Catal. A, 2007, vol. 323, p. 110.CrossRefGoogle Scholar
  18. 18.
    Mehrizad, A., Gharbani, P., and Tabatabii, S.M., J. Iran. Chem. Res., 2009, no. 2, p. 145.Google Scholar
  19. 19.
    Shang, Y.L., Jia, Y.L., Liao, F.H., et al., J. Mater. Sci., 2007, vol. 42, p. 2586.CrossRefGoogle Scholar
  20. 20.
    Wu, Q., Zhao, B.Y., Fang, C., and Hu, K.A., Eur. Phys. J. E, 2005, vol. 17, p. 63.CrossRefGoogle Scholar
  21. 21.
    Yin, J. and Zhao, X., J. Mater. Chem., 2003, vol. 13, p. 689.CrossRefGoogle Scholar
  22. 22.
    Yin, J.B. and Zhao, X.P., J. Phys. Chem. B, 2006, vol. 110, p. 12916.CrossRefGoogle Scholar
  23. 23.
    Shang, Y.L., Jia, Y.L., Liao, F.H., et al., J. Mater. Sci., 2007, vol. 42, p. 2586.CrossRefGoogle Scholar
  24. 24.
    Murashkevich, A.N., Alisienok, O.A., Zharskii, I.M., and Korbko, E.V., Inorg. Mater., 2013, vol. 49, p. 165.CrossRefGoogle Scholar
  25. 25.
    Limar’, T.F., Savos’kina, A.I., Andreeva, V.I., and Mank, V.V., Zh. Neorg. Khim., 1969, vol. 14, p. 2307.Google Scholar
  26. 26.
    Kozub, G.M., Zarko, V.I., Antonova, L.S., and Pavlov, V.V., Ukr. Khim. Zh., 1982, vol. 48, p. 827.Google Scholar
  27. 27.
    Kofstad, P., Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides, New York: Wiley, 1972.Google Scholar
  28. 28.
    Camaratta, R., Wilson, A., and Bergmann, C.P., Rev. Adv. Mater. Sci., 2011, vol. 27, p. 64.Google Scholar
  29. 29.
    Sedneva, T.A., Lokshin, E.P., Belikov, M.L., and Knyazeva, A.I., Inorg. Mater., 2013, vol. 49, p. 786.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. N. Murashkevich
    • 1
    Email author
  • O. A. Alisienok
    • 1
  • I. M. Zharskii
    • 1
  • E. V. Korobko
    • 2
  • N. A. Zhuravskii
    • 2
  • Z. A. Novikova
    • 2
  1. 1.Belarusian State Technological UniversityMinskBelarus
  2. 2.Lykov Institute of Heat and Mass TransferNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations