Colloid Journal

, Volume 76, Issue 4, pp 425–434 | Cite as

Rheological properties of road bitumens modified with polymer and solid nanosized additives

  • S. O. Ilyin
  • M. P. Arinina
  • Yu. S. Mamulat
  • A. Ya. Malkin
  • V. G. Kulichikhin
Article

Abstract

The study of the viscoelastic properties of composites based on road bitumens have shown that the addition of polymeric modifiers (poly(bytadiene-block-styrene) or devulcanized rubber particles) substantially increases the storage and loss moduli and decreases the intensity of reduction in the storage modulus with temperature by several orders of magnitude. However, at high polymer content, growth inadmissible from the point of view of acceptable technological parameters is observed in the apparent viscosity. The introduction of carbon nanotubes into bitumen does not substantially affect its viscoelastic properties. Filling with meta-kaolin promotes an increase in the storage modulus at elevated temperatures. It has been shown that a direct correlation may be established between the objective characteristics of bitumen-based composites and standard specification parameters, such as penetration depth and heat resistance.

Keywords

Asphalt Bitumen Rheological Property Storage Modulus Loss Modulus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lesueur, D., Adv. Colloid Interface Sci., 2009, vol. 145, p. 42.CrossRefGoogle Scholar
  2. 2.
    Rehbinder, P.A., Zh. Vses. Khim. O-va im D.I. Mendeleeva, 1963, vol. 8, no. 2, p. 162.Google Scholar
  3. 3.
    Rehbinder, P.A., Fiziko-khimicheskaya mekhanika dispersnykh struktur: sbornik statei (Physicochemical Mechanics of Disperse Structures: Collected Works), Moscow: Nauka, 1966.Google Scholar
  4. 4.
    Gorshenina, G.I., Kuperman, M.E., and Mikhailov, N.V., Kolloidn. Zh., 1964, vol. 26, p. 165.Google Scholar
  5. 5.
    Kolbanovskaya, A.S., Davydova, A.R., and Shemonaeva, D.S., Kolloidn. Zh., 1967, vol. 29, p. 509.Google Scholar
  6. 6.
    Shemonaeva, D.S. and Kolbanovskaya, A.S., Kolloidn. Zh., 1973, vol. 35, p. 401.Google Scholar
  7. 7.
    Kotlyarskii, E.V., Finashin, V.N., Uriev, N.B., and Chernomaz, V.E., Kolloidn. Zh., 1987, vol. 49, p. 72.Google Scholar
  8. 8.
    Gokhman, L.M., in Puti uluchsheniya svoistv asfal’tobetonnykh i drugikh bitumomineral’nykh smesei (Methods for Improvement of the Properties of Asphalt Concrete and Other Bituminous Mineral Mixes), Moscow: SoyuzdorNII, 1971.Google Scholar
  9. 9.
    Gokhman, L.M. and Davydova, K.I., in Polimernye materialy v stroitel’stve pokrytii avtomobil’nykh dorog (Polymer Materials in Automobile Road Pavements), Moscow: SoyuzdorNII, 1981.Google Scholar
  10. 10.
    Rudenskaya, I.M. and Rudenskii, A.V., Reologicheskie svoistva bitumov (Rheological Properties of Bitumen), Moscow: Vysshaya Shkola, 1967.Google Scholar
  11. 11.
    Malkin, A.Ya., Sabsai, O.Yu., Verebskaya, E.A., Zolotarev, V.A., and Vinogradov, G.V., Kolloidn. Zh., 1976, vol. 38, p. 181.Google Scholar
  12. 12.
    Vinogradov, G.V., Zolotarev, V.A., and Verebskaya, E.A., Kolloidn. Zh., 1979, vol. 41, p. 409.Google Scholar
  13. 13.
    Kolbanovskaya, A.C. and Mikhailov, V.V., Dorozhnye bitumy (Road Bitumen), Moscow: Transport, 1973.Google Scholar
  14. 14.
    Luksha, O.V., Opanasenko, O.N., Krut’ko, N.P., and Loboda, Yu.V., Russ. J. Appl. Chem. 2006, vol. 79, p. 1021.CrossRefGoogle Scholar
  15. 15.
    Rozental’, D.A., Kutsenko, V.I., and Miroshnikov, E.P., Stroit. Mater., 1995, no. 9, p. 23.Google Scholar
  16. 16.
    Gokhman, L.M., Gurarii, E.M., Davydova, A.R., and Davydova, K.I., Polimerno-bitumnye vyazhushchie materialy na osnove SBS dlya dorozhnogo stroitel’stva. Vyp. 4 (SB-Based Polymer Bitumen Binders for Road Building), Moscow: Inforavtodor, 2002, no. 4.Google Scholar
  17. 17.
    Pechenyi, B.G., Bitumy i bitumnye kompozitsii (Bitumen and Bituminous Compositions), Moscow: Khimiya, 1990.Google Scholar
  18. 18.
    Rudenskii, A.V., Nikonova, O.N., and Kaziev, M.G., Stroit. Mater., 2011, no. 10, p. 10.Google Scholar
  19. 19.
    Ivan’ski, M. and Uriev, N.B., Asfal’tobeton kak kompozitsionnyi material (s nanodispersnym i polimernym komponentami) (Asphalt Concrete as Composite Material (with Nanodisperse and Polymer Components)), Moscow: Tekhpoligraftsentr, 2007.Google Scholar
  20. 20.
    Yousefi, A.A., Prog. Color Colorants Coat., 2009, vol. 2, p. 53.Google Scholar
  21. 21.
    Huang, S.C., J. Mater. Civil Eng., 2008, vol. 30, p. 221.CrossRefGoogle Scholar
  22. 22.
    Mashaan, N.S. and Karim, M.R., Int. J. Nano Mater. Sci., 2012, vol. 1, p. 68.Google Scholar
  23. 23.
    Fu, H.Y., Xie, L.D., Dou, D.Y., Li, L.F., Yu, M., and Yao, S.D., Constr. Build. Mater., 2007, vol. 21, p. 1528.CrossRefGoogle Scholar
  24. 24.
    Wang, Q., Liao, M.Y., and Wang, Y.R., J. Appl. Polym. Sci., 2007, vol. 103, p. 8.CrossRefGoogle Scholar
  25. 25.
    Krut’ko, N.P., Opanasenko, O.N., Luksha, O.V., and Loboda, Yu.V., Russ. J. Appl. Chem., 2009, vol. 82, p. 1301.CrossRefGoogle Scholar
  26. 26.
    Polacco, G., Kŕiž, P., Filippi, S., Stastna, J., Biondi, D., and Zanzotto, L., Eur. Polym. J., 2008, vol. 44, p. 3512.CrossRefGoogle Scholar
  27. 27.
    Zhang, B., Xi, M., Zhang, D., Zhang, H., and Zhang, B., Constr. Build. Mater., 2009, vol. 23, p. 3112.CrossRefGoogle Scholar
  28. 28.
    Navarro, F.J., Partal, P., and Martinez-Boza, F., Polym. Test., 2010, vol. 29, p. 588.CrossRefGoogle Scholar
  29. 29.
    Sureshkumar, M.S., Filippi, S., Polacco, G., Kazatchkov, I., Stastna, J., and Zanzotto, L., Eur. Polym. J., 2010, vol. 46, p. 621.CrossRefGoogle Scholar
  30. 30.
    Sengoz, B. and Isikyakar, G., Constr. Build. Mater., 2007, vol. 22, p. 1897.CrossRefGoogle Scholar
  31. 31.
    Garrera, V., Partal, P., Garcia-Morales, M., Gallegos, C., and Perez-Lope, F., Fuel Process. Technol., 2010, vol. 91, p. 1139.CrossRefGoogle Scholar
  32. 32.
    Guardi, A.A., Partal, P., Navarro, F.J., Garcia-Morales, M., and Gallegos, C., Energy Fuels, 2011, vol. 25, p. 4055.CrossRefGoogle Scholar
  33. 33.
    Guardi, A.A., Garcia-Morales, M., Navarro, F.J., and Partal, P., Fuel, 2012, vol. 96, p. 862.Google Scholar
  34. 34.
    Martin-Alfonso, M.I., Partal, P., Navarro, F.J., Garcia-Morales, M., and Gallegos, C., Eur. Polym. J., 2008, vol. 44, p. 1451.CrossRefGoogle Scholar
  35. 35.
    Garrera, V., Garcia-Morales, M., Partal, P., and Gallegos, C., Rheol. Acta, 2010, vol. 49, p. 563.CrossRefGoogle Scholar
  36. 36.
    Navarro, F.J., Partal, P., Garcia-Morales, M., Martinez-Boza, F.J., and Gallegos, C., Fuel, 2007, vol. 86, p. 2291.CrossRefGoogle Scholar
  37. 37.
    Cuadri, A.A., Garcia-Morales, M., Navarro, F.J., Airey, G.D., and Partal, P., Rheol. Acta, 2013, vol. 52, p. 145.CrossRefGoogle Scholar
  38. 38.
    Navarro, F.J., Partal, P., Garcia-Morales, M., Martin-Alonso, M.J., Martinez-Boza, F., Gallegos, C., Bordado, J.S.M., and Diogo, A.C., J. Ind. Chem. Eng., 2009, vol. 15, p. 458.CrossRefGoogle Scholar
  39. 39.
    Martinez, M., Paez, A., and Martin, M., Fuel, 2008, vol. 87, p. 1148.CrossRefGoogle Scholar
  40. 40.
    Masson, J.F., Energy Fuels, 2008, vol. 22, p. 2637.CrossRefGoogle Scholar
  41. 41.
    Vasiljevic-Shikalevska, A., Popovska-Pavlovska, F., Cimmino, S., Duraccio, D., and Silvestre, C., J. Appl. Polym. Sci., 2010, vol. 118, p. 1320.Google Scholar
  42. 42.
    Ghasemi, M., Marandi, S.M., Tahmoores, M., Kamalia, R.J., and Taherzade, R., J. Basic Appl. Sci. Res., 2012, vol. 2, p. 1338.Google Scholar
  43. 43.
    Gutierrez, L. and Pawlik, M., J. Rheol. (N. Y.), 2012, vol. 56, p. 687.CrossRefGoogle Scholar
  44. 44.
    Gutierrez, L., PhD Thesis (The University of British Columbia, Vancouver, Canada, 2009).Google Scholar
  45. 45.
    Parviz, A., Austr. J. Basic Appl. Sci., 2011, vol. 5, p. 3270.Google Scholar
  46. 46.
    Hassan, Z., Hassan, D., Rezvan, B., and Ali, A., World Acad. Sci. Eng. Technol., 2012, vol. 68, p. 1534.Google Scholar
  47. 47.
    Shokuhfar, A. and Ebrahimi-Nejad, S., Constr. Build. Mater., 2010, vol. 24, p. 1239.CrossRefGoogle Scholar
  48. 48.
    Jahromi, S.Gh. and Khodaii, A., Constr. Build. Mater., 2009, vol. 23, p. 2894.CrossRefGoogle Scholar
  49. 49.
    You, Zh. and Mills-Beale, J., Constr. Build. Mater., 2011, vol. 25, p. 1072.CrossRefGoogle Scholar
  50. 50.
    Fu, Y., Wu, Sh., Han, J., and Yu, J., Abstracts of Papers, Int. Conf. on Mech. Automat. Control Eng. (MACE), Wuhan, 2010, p. 1382.Google Scholar
  51. 51.
    Liu, T.G., Wu, S.P., and Han, J., Key Eng. Mater., 2011, vol. 467.Google Scholar
  52. 52.
    Hooshar, A., Uhlok, H., Kaminsky, H.W., Shinbine, A., Omotoso, O., Liu, Q., Ivey, D.G., and Etsel, T.H., Appl. Clay Sci., 2010, vol. 48, p. 466.CrossRefGoogle Scholar
  53. 53.
    Yartsev, V.P., Polezhaeva, E.S., and Buchnev, A.Yu., Vestn. TGTU, Materialoved. Nanotekhnol., 2011, vol. 17, no. 4, p. 1053.Google Scholar
  54. 54.
    Hasan, Z., Kamran, R., Mohammad, F., Ahmad, G., and Hosein, F., Int. J. Civil Environ. Eng., 2012, vol. 12, p. 53.Google Scholar
  55. 55.
    Motlagh, A.A., Kiasat, A., Mirzaei, I.E., and Birgani, F.O., World Appl. Sci. J., 2012, vol. 18, p. 594.Google Scholar
  56. 56.
    Amirkhanian, A.R., Xiao, F., and Amirkhanian, S.N., Int. J. Pavement Res. Technol., 2011, vol. 4, p. 81.Google Scholar
  57. 57.
    Yao, H., You, Z., Li, L., Goh, S.W., Lee, C.H., Yap, Y.K., and Shi, X., Constr. Build. Mater., 2013, vol. 38, p. 327.CrossRefGoogle Scholar
  58. 58.
    Karbushev, V.V., Semakov, A.V., and Kulichikhin, V.G., Polym. Sci., Ser. A, 2011, vol. 53, p. 1513.CrossRefGoogle Scholar
  59. 59.
    Cominsky, R.J., Huber, G.A., Kennedy, T.W., and Anderson, M., The Superpave Mix Design Manual for New Construction and Overlays, Washington, DC: Strategic Highway Research Program, 1994.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. O. Ilyin
    • 1
  • M. P. Arinina
    • 1
  • Yu. S. Mamulat
    • 1
  • A. Ya. Malkin
    • 1
  • V. G. Kulichikhin
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations