Skip to main content
Log in

A study of nucleation in supersaturated ibuprofen vapor in a flow diffusion chamber

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Isothermal nucleation of supersaturated ibuprofen racemate vapor has been experimentally studied in a flow diffusion chamber at 293.3 and 301.2 K. Nucleation rates have been measured in the range of 104−104 cm−3 s−1 as functions of supersaturation. According to the first nucleation theorem, the numbers of molecules in critical nuclei have been found and used to determine the nucleation rate and supersaturation values as depending on the sizes of critical nuclei. The comparison of the experimental data with theoretical predictions has shown that the nucleation rates measured as functions of the numbers of molecules in critical nuclei are higher than the rates predicted by the classical theory by six to seven decimal orders of magnitude but, within one order of magnitude, coincide with the rates predicted by a theory previously proposed in a work by one of the authors, in which nucleation clusters were considered to be microscopic objects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Onischuk, A.A., Tolstikova, T.G., Sorokina, I.V., Zhukova, N.A., Baklanov, A.M., Karasev, V.V., Borovkova, O.V., Dultseva, G.G., Boldyrev, V.V., and Fomin, V.M., J. Aerosol Med. Pulm. Drug Delivery, 2009, vol. 22, p. 245.

    Article  CAS  Google Scholar 

  2. Heist, R.H. and He, H., J. Phys. Chem. Ref. Data, 1994, vol. 23, p. 781.

    Article  CAS  Google Scholar 

  3. Kacker, A. and Heist, R.H., J. Chem. Phys., 1985, vol. 82, p. 2734.

    Article  CAS  Google Scholar 

  4. Wagner, P.E. and Strey, R., J. Phys. Chem., 1981, vol. 85, p. 2694.

    Article  CAS  Google Scholar 

  5. Kogan, Ya.I. and Burnasheva, Z.A., Zh. Fiz. Khim., 1960, vol. 34, p. 2630.

    Google Scholar 

  6. Higuchi, W.J. and O’Konski, C.T., J. Colloid Sci., 1960, vol. 15, p. 14.

    Article  CAS  Google Scholar 

  7. Amelin, A.G., Teoreticheskie osnovy obrazovaniya tumana pri kondensatsii para (Theoretical Fundamentals of Mist Formation on Vapor Condensation), Moscow: Khimiya, 1972.

    Google Scholar 

  8. Rybin, E.N., Extended Abstract of Cand. Sci. (Chem.) Dissertation, Moscow, 1973.

    Google Scholar 

  9. Vaganov, V.S., Kodenev, G.G., and Rubakhin, E.A., Preprint of Inst. of Geology and Geophysics, USSR Academy of Sciences, Novosibirsk, 1985, no. 14.

  10. Bedanov, V.M., Vaganov, V.S., Gadiyak, G.V., Kodenev, G.G., and Rubakhin, E.A., Khim. Fiz., 1988, vol. 7, p. 555.

    CAS  Google Scholar 

  11. Haemeri, K., Kulmala, M., Krissinel, E., and Kodenyov, G., J. Chem. Phys., 1996, vol. 105, p. 7683.

    Article  Google Scholar 

  12. Mikheev, V.B., Laulainen, N.S., Barlow, S.E., Knott, M., and Ford, I.J., J. Chem. Phys., 2000, vol. 113, p. 3704.

    Article  CAS  Google Scholar 

  13. Volkov, E.A., Chislennye metody (Numerical Methods), Moscow: Nauka, 1987.

    Google Scholar 

  14. Becker, R. and Doering, W., Ann. Phys. (New York), 1935, vol. 24, p. 719.

    Article  CAS  Google Scholar 

  15. Zel’dovich, Ya.B., Zh. Eksp. Teor. Fiz., 1942, vol. 12, p. 525.

    Google Scholar 

  16. Spravochnik khimika (Chemist’s Handbook), Nikol’skii, B.P., Ed., Moscow: Khimiya, 1963.

  17. Khimicheskaya entsiklopediya (Chemical Encyclopedia), Moscow: Sovetskaya Entsiklopediya, 1988, vol. 1.

  18. Reid, R.C. and Sherwood, T.K., The Properties of Gases and Liquids, New York: McGraw-Hill, 1966.

    Google Scholar 

  19. Perlovich, G.L., Kurkov, S.V., Hansen, L.Kr., and Bauer-Brandl, A., J. Pharm. Sci., 2004, vol. 93, p. 654.

    Article  CAS  Google Scholar 

  20. Samodurov, A.V., Vosel’, S.V., Baklanov, A.M., Onishchuk, A.A., and Karasev, V.V., Colloid J., 2013, vol. 75, p. 397.

    Article  CAS  Google Scholar 

  21. Frenkel’, Ya.I., Kineticheskaya teoriya zhidkostei (The Kinetic Theory of Liquids), Moscow: Akad. Nauk SSSR, 1959.

    Google Scholar 

  22. Dillmann, A. and Meier, G.E.A., J. Chem. Phys., 1991, vol. 94, p. 3872.

    Article  CAS  Google Scholar 

  23. Kodenev, G.G., Colloid J., 2008, vol. 70, p. 589.

    Article  CAS  Google Scholar 

  24. Lushnikov, A.A. and Sutugin, A.G., Usp. Khim., 1976, vol. 45, p. 385.

    Article  Google Scholar 

  25. Abraham, F.F., Homogeneous Nucleation Theory, New York: Academic, 1974.

    Google Scholar 

  26. Kashchiev, D., J. Chem. Phys., 1982, vol. 76, p. 5098.

    Article  CAS  Google Scholar 

  27. Mavliev, R.A. and Ankilov, A.N., Kolloidn. Zh., 1985, vol. 15, p. 523.

    Google Scholar 

  28. Onischuk, A.A., Di Stasio, S., Karasev, V.V., Baklanov, A.M., Makhov, G.A., Vlasenko, A.L., Sadykova, A.R., Shipovalov, A.V., and Panfilov, V.N., J. Aerosol Sci., 2003, vol. 34, p. 383.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.G. Kodenev, A.V. Samodurov, M.N. Baldin, A.M. Baklanov, 2014, published in Kolloidnyi Zhurnal, 2014, Vol. 76, No. 1, pp. 42–54.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kodenev, G.G., Samodurov, A.V., Baldin, M.N. et al. A study of nucleation in supersaturated ibuprofen vapor in a flow diffusion chamber. Colloid J 76, 38–50 (2014). https://doi.org/10.1134/S1061933X14010086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X14010086

Keywords

Navigation