Skip to main content
Log in

Effect of the type of the oil phase on stability of highly concentrated water-in-oil emulsions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

The water-in-oil high internal phase emulsions were the subject of the study. The emulsions consisted of a super-cooled aqueous solution of inorganic salt as a dispersed phase and industrial grade oil as a continuous phase. The influence of the industrial grade oil type on a water-in-oil high internal phase emulsion stability was investigated. The stability of emulsions was considered in terms of the crystallization of the dispersed phase droplets (that are super-cooled aqueous salt solution) during ageing. The oils were divided into groups: one that highlighted the effect of oil/aqueous phase interfacial tension and another that investigated the effect of oil viscosity on the emulsion rheological properties and shelf-life. For a given set of experimental conditions the influence of oil viscosity for the emulsion stability as well as the oil/aqueous interfacial tension plays an important role. Within the frames of our experiment it was found that there are oil types characterized by optimal parameters: oil/aqueous phase interfacial tension being in the region of 19–24 mN/m and viscosity close to 3 mPa s; such oils produced the most stable high internal phase emulsions. It was assumed that the oil with optimal parameters kept the critical micelle concentration and surfactant diffusion rate at optimal levels allowing the formation of a strong emulsifier layer at the interface and at the same time creating enough emulsifier micelles in the inter-droplet layer to prevent the droplet crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Masalova, I. and Malkin, A.Ya., Colloid J., 2007, vol. 69, p. 220.

    Google Scholar 

  2. Masalova, I., Malkin, A.Ya., Ferg, E., Kharatiyan, E., Taylor, M., and Haldenwang, R., J. Rheol., 2006, vol. 50, p. 435.

    Article  CAS  Google Scholar 

  3. Tshilumbu, N.N., Ferg, E.E., and Masalova, I., Colloid J., 2010, vol. 72, p. 569.

    Article  CAS  Google Scholar 

  4. Drelich, A., Gomez, F., Clausse, D., and Pezron, I., Colloids Surf. A, 2010, vol. 365, p. 171.

    Article  CAS  Google Scholar 

  5. Kim, J., Lee, D., Shum, H.C., and Weitz, D.A., Adv. Mater., 2008, vol. 20, p. 3239.

    Article  CAS  Google Scholar 

  6. Encyclopedia of Emulsion Technology, Vol. 2, Applications, Ed. by Becher P., New York: Marcel Dekker, 1985.

    Google Scholar 

  7. Encyclopedia of Emulsion Technology, Vol. 3, Basic Theory, Measurements and Applications, Ed. by Becher P., New York: Marcel Dekker, 1988.

    Google Scholar 

  8. Emulsions: Fundamentals and Application in the Petroleum Industry, Ed. by Schramm L.L. Adv. Chem. Ser. 231, Washington, DC: Am. Chem. Soc., 1992.

    Google Scholar 

  9. McClements, D.J., Food Emulsions: Principles, Practice and Technologies, CRC Press, 1999.

    Google Scholar 

  10. Hunter, R.J., Introduction to Modern Colloid Science, Oxford: Oxford Univ. Press, 1993.

    Google Scholar 

  11. Hunter, R.J., Fundamentals of Colloid Science, Vol. 1, Oxford: Clarendon, 1989.

    Google Scholar 

  12. Fingas, M., Fieldhouse, B., and Mullin, J.V., In: Proc. of the 20th Arctic and Marine Oilspill Program (AMOP) Technical Seminar, Environment Canada, 1997, p. 21.

    Google Scholar 

  13. Binks, B.P. and Whitby, C.P., Colloid Surf. A, 2005, vol. 253, p. 105.

    Article  CAS  Google Scholar 

  14. Binks, B.P., Curr. Opin. Colloid Interface Sci., 2002, vol. 7, p. 21.

    Article  CAS  Google Scholar 

  15. Binks, B.P. and Rodrigues, J.A., Angew. Chem. Int. Ed., 2005, vol. 44, p. 441.

    Article  CAS  Google Scholar 

  16. Bobra, M., Fingas, M., and Tennyson, E., Chem. Tech., 1992, vol. 22. p. 236.

    CAS  Google Scholar 

  17. Fingas, M., Fieldhouse, B., Bier, I., Conrod, D., and Tennyson, E., In: Proc. of the Workshop on Emulsions, Washington, DC: Marine Spill Response Corporation, 1993, p. 9.

    Google Scholar 

  18. Fingas, M., Fieldhouse, B., Bobra M., and Tennyson, E., In: Proc. of the Workshop on Emulsions, Washington, DC: Marine Spill Response Corporation, 1993, p. 7.

    Google Scholar 

  19. Midmore, B.R., J. Colloid Interface Sci., 1999, vol. 213, p. 352

    Article  CAS  Google Scholar 

  20. Weiss, J., Herrmann, N., and McClements, D.J., Langmuir, 1999, vol. 15, p. 6652.

    Article  CAS  Google Scholar 

  21. Wagner, C., Z. Elektrochem., 1961, vol. 65, p. 581.

    CAS  Google Scholar 

  22. Lifshitz, I.M. and Slyozov, V.V., J. Phys. Chem. Solids, vol. 19, p. 35.

  23. Yu, R.J. and van Scott, E.J., US Patent 4 252 796, 1981.

  24. Yu, R.J. and van Scott, E.J., US Patent 4 252 630, 1981.

  25. Chanamai, R., Horn, G., and McClements, D.J., J. Colloid Interface Sci., 2002, vol. 247, p. 167.

    Article  CAS  Google Scholar 

  26. El-Mahrab-Robert, M., Rosilio, V., Bolzinger, M.-A., Chaminade, P., and Grossiord, J.-L., Int. J. Pharm., 2008, vol. 348, p. 89.

    Article  CAS  Google Scholar 

  27. Krishnakumar, S. and Somasundaran, P., Langmuir, 1994, vol. 10, p. 2786.

    Article  CAS  Google Scholar 

  28. Chatterjee, M., Naskar, M.K., Siladitya, B., and Ganguli, D., J. Mater. Res., 2000, vol. 15, p. 176.

    Article  CAS  Google Scholar 

  29. Muto, S. and Meguro, K., Bull. Chem. Soc. Jpn., 1973, vol. 46, p. 1316.

    Article  CAS  Google Scholar 

  30. Santhanalakshmi, J. and Imaya, S.I., Proc. Indian Acad. Sci. (Chem. Sci.), 1997, vol. 109, p. 3.

    Google Scholar 

  31. Shiao, S.Y., Patist, A., Free, M.L., Chhabra, V., Huibers, P.D.T, Gregory, A., Patel, S., and Shah, D.O., Colloids Surf. A, 1997, vol. 128, p. 200.

    Article  Google Scholar 

  32. Masalova, I., Foundazi, R., and Malkin, A.Y., Colloids Surf. A., 2011, vol. 375, p. 82.

    Article  Google Scholar 

  33. Henderson, M.J., White, J.W., and Perriman, A., ISIS Experimental Report 14591, 2004.

    Google Scholar 

  34. Reynolds, A.P., McGillivray, D.J., Mata, J.P., Yaron, P.N., and White, J.W., J. Colloid Interface Sci., 2010, vol. 349, p. 552.

    Article  Google Scholar 

  35. Wen, L. and Papadopoulos, K.D., Langmuir, 2000, vol. 16, p. 7615.

    Google Scholar 

  36. Opawale, F.O. and Burgess, D., J. Colloid Interface Sci., 1998, vol. 197, p. 142.

    Article  CAS  Google Scholar 

  37. Fingas, M., Fieldhouse, B., and Mullin, J.V., In: Proc. of the 19th Arctic and Marine Oilspill Program (AMOP) Technical Seminar, Environment Canada, 1996, p. 73.

    Google Scholar 

  38. Binks, B.P. and Whitby, C.P., Langmuir, 2004, vol. 20, p. 1130.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Masalova.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masalova, I., Kharatyan, E. & Tshilumbu, N.N. Effect of the type of the oil phase on stability of highly concentrated water-in-oil emulsions. Colloid J 75, 579–585 (2013). https://doi.org/10.1134/S1061933X13050098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X13050098

Keywords

Navigation