Skip to main content
Log in

Simulation of structure-related mechanical characteristics of disperse systems under dynamic conditions

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Results of simulating the structure-related rheological properties of disperse systems under dynamic conditions are reported. Computer-simulation data on the influence of some parameters on the viscosity and structure-related characteristics of dispersions agree with analytical dependences and experimental results. Problems concerning the dynamic equilibrium of dispersions subjected to shear deformation, as well as disturbance of equilibrium, are considered. Results of computer simulating the percolation characteristics of dispersion microstructure under dynamic conditions are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Uriev, N.B., Usp. Khim., 2004, vol. 73, p. 39.

    Article  Google Scholar 

  2. Uriev, N.B., Colloid J., 1998, vol. 60, p. 609.

    CAS  Google Scholar 

  3. Uriev, N.B., Fiziko-khimicheskie osnovy tekhnologii dispersnykh sistem i materialov (Physicochemical Fundamentals of Disperse Systems and Materials), Moscow: Khimiya, 1988.

    Google Scholar 

  4. Uriev, N.B. and Kuchin, I.V., Adv. Colloid Interface Sci., 2007, vols. 134–135, p. 249.

    Article  Google Scholar 

  5. Uriev, N.B. and Kuchin, I.V., Usp. Khim., 2006, vol. 75, p. 36.

    Article  Google Scholar 

  6. Kuchin, I.V. and Uriev, N.B., Zh. Fiz. Khim., 2007, vol. 81, p. 421.

    Google Scholar 

  7. Alder, B.J. and Wainwright, T.E., J. Chem. Phys., 1959, vol. 31, p. 459.

    Article  CAS  Google Scholar 

  8. Rahman, A., Phys. Rev. A, 1964, vol. 136, no. 2, p. 405.

    CAS  Google Scholar 

  9. Rapaport, D.C., The Art of Molecular Dynamics Simulation, Cambridge: Cambridge Univ. Press, 2004.

    Book  Google Scholar 

  10. Strating, P., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1999, vol. 59, p. 2175.

    Article  CAS  Google Scholar 

  11. Terada, Y. and Tokuyama, M., J. Korean Phys. Soc., 2001, vol. 38, p. 512.

    CAS  Google Scholar 

  12. Mossa, S., De Michele, C., and Sciortino, F., J. Chem. Phys., 2007, vol. 126, p. 014905.

    Article  CAS  Google Scholar 

  13. Somasi, M., Khomami, B., Woo, N.J., Hur, J.S., and Shaqfeh, E.S.G., J. Non-Newtonian Fluid Mech., 2002, vol. 108, p. 227.

    Article  CAS  Google Scholar 

  14. Jendrejack, R.M., De Pablo, J.J., and Graham, M.D., J. Chem. Phys., 2002, vol. 116, p. 7752.

    Article  CAS  Google Scholar 

  15. Brady, J.F. and Bossis, G., Annu. Rev. Fluid Mech., 1988, vol. 20, p. 111.

    Article  Google Scholar 

  16. Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford: Clarendon, 2001.

    Google Scholar 

  17. Benzi, R., Succi, S., and Vergassola, M., Phys. Rev., 1992, vol. 222, p. 145.

    Google Scholar 

  18. Chen, S. and Doolen, G.D., Annu. Rev. Fluid Mech., 1998, vol. 30, p. 329.

    Article  Google Scholar 

  19. Hoogerbrugge, E.J. and Koelman, J.M.V.A., Europhys. Lett., 1992, vol. 19, p. 155.

    Article  Google Scholar 

  20. Koelman, J.M.V.A. and Hoogerbrugge, E.J., Europhys. Lett., 1993, vol. 21, p. 363.

    Article  CAS  Google Scholar 

  21. Pan, W., Caswell, B., and Karniadakis, G.E., Langmuir, 2010, vol. 26, p. 133.

    Article  CAS  Google Scholar 

  22. Lisal, M. and Brennan, J.K., Langmuir, 2007, vol. 23, p. 4809.

    Article  CAS  Google Scholar 

  23. Malfreyt, P. and Tildesley, D.J., Langmuir, 2000, vol. 16, p. 4732.

    Article  CAS  Google Scholar 

  24. Boek, E.S., Coveney, P.V., Lekkerkerker, H.N.W., and Van der Schoot, P., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1997, vol. 55, p. 3124.

    Article  CAS  Google Scholar 

  25. Martys, N.S., J. Rheol. (N. Y.), 2005, vol. 49, p. 401.

    Article  CAS  Google Scholar 

  26. Switzer, L.H. and Klingenberg, D.J., J. Rheol. (N. Y.), 2003, vol. 47, p. 759.

    Article  CAS  Google Scholar 

  27. Lange, E., PhD Thesis (Univ. of Konstanz, 2009).

  28. Flory, P.J., J. Am. Chem. Soc., 1941, vol. 63, p. 3083.

    Article  CAS  Google Scholar 

  29. Stockmayer, W.H., J. Chem. Phys., 1943, vol. 11, p. 45.

    Article  CAS  Google Scholar 

  30. Broadbent, S.R. and Hammersley, J.M., Proc. Cambridge Philos. Soc., 1957, vol. 53.

  31. Tarasevich, Yu.Yu. and Manzhosova, E.N., Exponenta Pro. Mat. Prilozh., 2004, no. 2, p. 22.

    Google Scholar 

  32. Uriev, N.B. and Potanin, A.A., Tekuchest’ suspenzii i poroshkov (Flowability of Suspensions and Powders), Moscow: Khimiya, 1992.

    Google Scholar 

  33. Li, J., Ma, P.C., Chow, W.S., To, C.K., Tang, B.Z., and Kim, J.-K., Adv. Funct. Mater., 2007, vol. 17, p. 3207.

    Article  CAS  Google Scholar 

  34. Hu, N., Masuda, Z., Yan, Ch., Yamamoto, G., Fukunaga, H., and Hashida, T., Nanotechnology, 2008, vol. 19, p. 215701.

    Article  Google Scholar 

  35. Derjaguin, B.V., Churaev, N.V., and Muller, V.M., Surface Forces, New York: Consultants Bureau, 1987.

    Book  Google Scholar 

  36. Lamb, G., Hydrodynamics, Moscow: GITTL, 1947.

    Google Scholar 

  37. Riman, I.S. and Kreps, R.L., Tr. TsAGI, 1947, no. 635, p. 1.

    Google Scholar 

  38. Landau, L.D. and Lifshitz, E.M., Statistical Physics, New York: Pergamon, 1980.

    Google Scholar 

  39. Zimon, A.D., Adgeziya pyli i poroshkov (Adhesion of Dust and Powders), Moscow: Khimiya, 1976.

    Google Scholar 

  40. Potanin, A.A. and Uriev, N.B., Teor. Osn. Khim. Tekhnol., 1988, vol. 22, p. 528.

    CAS  Google Scholar 

  41. Uriev, N.B., Kuchin, I.V., and Naumenko, E.A., Inzh.-Fiz. Zh., 2005, vol. 78, p. 164.

    Google Scholar 

  42. Handbook of Materials Modeling, Berlin: Springer, 2005.

  43. Brady, J.F., Chem. Eng. Sci., 2001, vol. 56, p. 2921.

    Article  CAS  Google Scholar 

  44. Silbert, L.E. and Melrose, J.R., J. Rheol. (N. Y.), 1999, vol. 43, p. 673.

    Article  CAS  Google Scholar 

  45. Krishnamurthy, S., Yadav, A., Phelan, P., et al., Microfluid Nanofluid, 2008, vol. 5, p. 33.

    Article  CAS  Google Scholar 

  46. Haddad, R.A. and Akansu, A.N., IEEE Trans. Acoust., Speech Signal Proc., 1991, vol. 39, p. 723.

    Article  Google Scholar 

  47. Pitas, I. and Venetsanopoulos, A.N., Nonlinear Digital Filters: Principles and Applications, Dordrecht: Kluwer Academic, 1990.

    Google Scholar 

  48. Allen, M.P. and Tildesley, D.J., Computer Simulation of Liquids, Oxford: Oxford Univ. Press, 1987.

    Google Scholar 

  49. Hoshen, J. and Kopelman, R., Phys. Rev. B: Condens. Matter, 1976, vol. 14, p. 3438.

    Article  CAS  Google Scholar 

  50. Rehbinder, P.A., Izbrannye trudy. Poverkhnostnye yavleniya v dispersnykh sistemakh. Fiziko-khimicheskaya mekhanika (Selected Works. Surface Phenomena in Disperse Systems. Physicochemical Mechanics), Moscow: Nauka, 1979.

    Google Scholar 

  51. Uriev, N.B., Vysokokontsentrirovannye dispersnye sistemy (Highly Concentrated Disperse Systems), Moscow: Khimiya, 1980.

    Google Scholar 

  52. Uriev, N.B. and Trofimova, L.E., Colloid J., 2003, vol. 65, p. 378.

    Article  CAS  Google Scholar 

  53. Arnol’d, V.I., Teoriya katastrof (Catastrophe Theory), Moscow: Editorial URSS, 2004.

    Google Scholar 

  54. Poston, T. and Stewart, I., Catastrophe Theory and Its Applications, London: Pitman, 1978.

    Google Scholar 

  55. Trofimova, L.E., Abstracts of Papers, 46 mezhdunarodnyi seminar po modelirovaniyu i optimizatsii kompozitov MOK (46 Int. Workshop on Simulation and Optimization of Composites MOK), p. 46.

  56. Lyapunov, A.M., Sobr. sochinenii (Collected Works), Moscow: Akad. Nauk SSSR, 1956, vol. 2.

    Google Scholar 

  57. Malkin, I.G., Teoriya ustoichivosti dvizheniya (The Theory of Motion Stability), Moscow: Nauka, 1966.

    Google Scholar 

  58. Andronov, A.A., Vitt, A.A., and Khaikin, S.E., Teoriya kolebanii (The Theory of Oscillations), Moscow: Fizmatgiz, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.V. Kuchin, N.B. Uriev, 2013, published in Kolloidnyi Zhurnal, 2013, Vol. 75, No. 5, pp. 596–610.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuchin, I.V., Uriev, N.B. Simulation of structure-related mechanical characteristics of disperse systems under dynamic conditions. Colloid J 75, 543–556 (2013). https://doi.org/10.1134/S1061933X13050050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X13050050

Keywords

Navigation