Skip to main content
Log in

Simulation of conditions for fabrication of optical nanowaveguides in the form of chains of spherical metal nanoparticles by electrostatic functionalization of the process substrate

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A method is proposed for electrostatic functionalization of substrates used to prepare ordered structures composed of closely spaced plasmon-resonant nanoparticles. The method ensures selective deposition of nanoparticles from the bulk of a colloidal system onto the substrates. This method is based on placing a metal nanotemplate of a required configuration at the opposite side of a substrate, with an electric potential being applied to the template. A mathematical model is developed to ensure that the system parameters responsible for the deposition of metal nanoparticles into ordered single-domain structures on the substrate from a bulk sol in a nonuniform electric field generated by the nanotemplate correspond to the real experimental conditions. Since the degree of imperfection of the synthesized chains governs the applicability of these structures to transmission of the optical excitation at the frequency of the surface plasmon of the particles, the dependence of the degree of imperfection on the physicochemical and electrical parameters of the system is studied using the Brownian-dynamics model. The calculations of the spectral and transmission properties of nanowaveguides of this type are exemplified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maier, S.A., Kik, P.G., Atwater, H.A., Meltzer, S., Harel, E., Koel, B.E., and Requicha, A.G., Nature Mater., 2003, vol. 2, p. 229.

    Article  CAS  Google Scholar 

  2. Sarychev, A.K. and Shalaev, V.M., Phys. Rep., 2000, vol. 335, p. 275.

    Article  CAS  Google Scholar 

  3. Stockman, M.I., Phys. Rev. Lett., 2004, vol. 93, p. 137404.

    Article  Google Scholar 

  4. Engheta, N., Salandrino, A., and Alu, A., Phys. Rev. Lett., 2005, vol. 95, p. 095504.

    Article  Google Scholar 

  5. Podolskiy, V.A., Sarychev, A.K., and Shalaev, V.M., Laser Phys., 2002, vol. 12, p. 292.

    CAS  Google Scholar 

  6. Stockman, M.I., Bergman, D.J., and Kobayashi, T., Phys. Rev. B: Condens. Matter, 2004, vol. 69, p. 054202.

    Article  Google Scholar 

  7. Gilani, T.H., Dushkina, N., Freeman, W.L., Numan, M.Z., Talwar, D.N., and Pulsifer, D.P., Opt. Eng., 2010, vol. 49, p. 120503.

    Article  Google Scholar 

  8. Faryad, M., Polo, J.A., and Lakhtakia, A., J. Nanophoton., 2010, vol. 4, p. 043505.

    Article  Google Scholar 

  9. Burin, A.L., Cao, H., Schatz, G.C., and Ratner, M.A., J. Opt. Soc. Am. B, 2004, vol. 21, p. 121.

    Article  CAS  Google Scholar 

  10. Quidant, R., Girard, C., Weeber, J.-C., and Dereux, A., Phys. Rev. B: Condens. Matter, 2004, vol. 69, p. 085407.

    Article  Google Scholar 

  11. Simovski, C.R., Viitanen, A.J., and Tretyakov, S.A., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 2005, vol. 72, p. 066606.

    Article  CAS  Google Scholar 

  12. Markel, V.A., J. Mod. Opt., 1993, vol. 40, p. 2281.

    Article  CAS  Google Scholar 

  13. Zou, S., Janel, N., and Schatz, G.C., J. Chem. Phys., 2004, vol. 120, p. 10871.

    Article  CAS  Google Scholar 

  14. Zou, S. and Schatz, G.C., Nanotechnology, 2006, vol. 17, p. 2813.

    Article  CAS  Google Scholar 

  15. Harnack, O., Ford, W., Yasuda, A., and Wesels, J., Nano Lett., 2002, vol. 2, p. 919.

    Article  CAS  Google Scholar 

  16. Croizier, K., Togan, E., Simsek, E., and Yang, T., Opt. Exp., 2007, vol. 15, p. 17482.

    Article  Google Scholar 

  17. Terekhin, V.V., Dement’eva, O.V., and Rudoy, V.M., Usp. Khim., 2011, vol. 80, p. 477.

    Article  Google Scholar 

  18. Roldughin, V.I., Usp. Khim., 2004, vol. 73, p. 123.

    Article  Google Scholar 

  19. Karpov, S.V., Isaev, I.L., Gavrilyuk, A.P., Grachev, A.S., and Gerasimov, V.S., Kolloidn. Zh., 2009, vol. 71, p. 314.

    Google Scholar 

  20. Shchukin, E.D., Pertsov, A.V., and Amelina, E.A., Kolloidnaya khimiya (Colloid Chemistry), Moscow: Mosk. Gos. Univ., 1982.

    Google Scholar 

  21. Karpov, S.V. and Ershov, A.E., Kolloidn. Zh., 2011, vol. 73, p. 788.

    CAS  Google Scholar 

  22. Landau, L.D. and Lifshitz, E.M., Teoriya uprugosti (Theory of Elasticity), Moscow: Nauka, 1987.

    Google Scholar 

  23. Sivukhin, D.V., Obshchii kurs fiziki. T. 3. Elektrichestvo (General Physics. Vol. 3. Electricity), Moscow: Fizmatlit, 1996.

    Google Scholar 

  24. Landau, L.D. and Lifshitz, E.M., Teoriya polya (Field Theory), Moscow: Nauka, 1987.

    Google Scholar 

  25. Karpov, S.V., Isaev, I.L., Gavrilyuk, A.P., Grachev, A.S., and Gerasimov, V.S., Kolloidn. Zh., 2009, vol. 71, p. 330.

    Google Scholar 

  26. Maier, S.A., Kik, P.G., Atwater, H.A., Meltzer, S., Harel, E., Koel, B.E., and Requicha, A.G., Nature Mater., 2003, vol. 2, p. 229.

    Article  CAS  Google Scholar 

  27. Markel, V.A., Shalaev, V.M., Stechel, E.B., Kim, W., and Armstrong, R.L., Phys. Rev. B: Condens. Matter, 1996, vol. 53, p. 2425.

    Article  CAS  Google Scholar 

  28. Markel, V.A. and Sarychev, A.K., Phys. Rev. B: Condens. Matter, 2007, vol. 75, p. 085426.

    Article  Google Scholar 

  29. Weber, W.H. and Ford, G.W., Phys. Rev. B: Condens. Matter, 2004, vol. 70, p. 125429.

    Article  Google Scholar 

  30. Ruting, F., Phys. Rev. B: Condens. Matter, 2011, vol. 83, p. 115447.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.V. Karpov, I.L. Rasskazov, 2013, published in Kolloidnyi Zhurnal, 2013, Vol. 75, No. 3, pp. 308–318.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karpov, S.V., Rasskazov, I.L. Simulation of conditions for fabrication of optical nanowaveguides in the form of chains of spherical metal nanoparticles by electrostatic functionalization of the process substrate. Colloid J 75, 279–288 (2013). https://doi.org/10.1134/S1061933X13030083

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X13030083

Keywords

Navigation