Colloid Journal

, Volume 75, Issue 3, pp 267–273 | Cite as

Rheology of aqueous poly(ethylene oxide) solutions reinforced with bentonite clay

  • S. O. Ilyin
  • G. S. Pupchenkov
  • A. I. Krasheninnikov
  • V. G. Kulichikhin
  • A. Ya. Malkin
Article

Abstract

The rheological properties of bentonite clay-filled aqueous solutions of high-molecular-mass poly(ethylene oxide) (PEO) have been studied. The PEO solution is a typical polymer solution characterized by the highest Newtonian viscosity and the range of non-Newtonian flow. The addition of small amounts of bentonite to the PEO solution causes passage to a viscoplastic behavior that manifests itself as the appearance of the yield stress. Therewith, the flow at the highest Newtonian viscosity in the region of low shear stresses (rather than rates) remains possible. After passing through the yield stress, the effect of antithixotropy, i.e., an increase in the viscosity with the deformation rate in a certain shear rate region, has been observed for the multicomponent systems. The data obtained have been interpreted assuming that the addition of the solid filler to the polymer solution destroys the random network of entanglements between macromolecules, while the presence of the polymer in the clay suspension reduces the strength of the coagulation structure of bentonite.

Keywords

Shear Rate Bentonite Ethylene Oxide Apparent Viscosity Colloid Journal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Malkin, A.Ya., Vysokomol. Soedin., Ser. A, 2009, vol. 51, p. 106.Google Scholar
  2. 2.
    Malkin, A.Ya. and Isayev, A.I., in Rheology: Concepts, Methods, and Applications, Toronto: ChemTec, 2012, p. 2.Google Scholar
  3. 3.
    Kratochvil, P., Petrus, V., Munk, P., et al., J. Polym. Sci., Polym. Symp., 1967, vol. 16, p. 1257.Google Scholar
  4. 4.
    Von Elias, H.G. and Lys, H., Makromol. Chem., 1966, vol. 96, p. 64.CrossRefGoogle Scholar
  5. 5.
    Amin, S., Rega, C.A., and Jankevics, H., Rheol. Acta, 2012, vol. 51, p. 329.CrossRefGoogle Scholar
  6. 6.
    Ilyin, S., Roumyantseva, T., Spiridonova, V., et al., Soft Matter, 2011, vol. 7, p. 9090.CrossRefGoogle Scholar
  7. 7.
    Heymann, L., Peukert, S., and Aksel, N., Rheol. Acta, 2002, vol. 41, p. 307.CrossRefGoogle Scholar
  8. 8.
    Aubry, T., Razafinimaro, T., and Mederic, P., J. Rheol. (N. Y.), 2005, vol. 49, p. 425.CrossRefGoogle Scholar
  9. 9.
    Di Giuseppe, E., Davaille, A., Mittelstaedt, E., and Francois, M., Rheol. Acta, 2012, vol. 51, p. 451.CrossRefGoogle Scholar
  10. 10.
    Berret, J.-F., Langmuir, 1997, vol. 13, p. 2227.CrossRefGoogle Scholar
  11. 11.
    Fardin, M.A., Lopez, D., Croso, J., et al., Phys. Rev. Lett., 2010, vol. 104, p. 178303.CrossRefGoogle Scholar
  12. 12.
    Shumsky, V.F., Lipatov, Yu.S., Kulichikhin, V.G., and Getmanchuk, I.P., Rheol. Acta, 1993, vol. 32, p. 352.CrossRefGoogle Scholar
  13. 13.
    Vasilyev, G.B., Makarova, V.V., Rebrov, A.V., et al., J. Appl. Polym. Sci., 2011, vol. 120, p. 3642.CrossRefGoogle Scholar
  14. 14.
    Briscoe, B., Luckham, P., and Zhu, S., J. Appl. Polym. Sci., 1998, vol. 70, p. 419.CrossRefGoogle Scholar
  15. 15.
    Ebagninin, K.W., Benchabane, A., and Bekkour, K., J. Colloid Interface Sci., 2009, vol. 336, p. 360.CrossRefGoogle Scholar
  16. 16.
    Rangelov, S. and Brown, W., Polymer, 2000, vol. 41, p. 4825.CrossRefGoogle Scholar
  17. 17.
    Hammouda, B., Ho, D.L., and Kline, S., Macromolecules, 2004, vol. 37, p. 6932.CrossRefGoogle Scholar
  18. 18.
    Layec-Raphalen, M.-N. and Wolff, C., J. Non-Newtonian Fluid Mech., 1976, vol. 1, p. 159.CrossRefGoogle Scholar
  19. 19.
    Liberatore, M.W. and McHugh, A.J., J. Non-Newtonian Fluid Mech., 2005, vol. 132, p. 45.CrossRefGoogle Scholar
  20. 20.
    Rivero, D., Gouveia, L.M., Muller, A.J., and Saez, A.E., Rheol. Acta, 2012, vol. 51, p. 13.CrossRefGoogle Scholar
  21. 21.
    Malkin, A., Ilyin, S., Roumyantseva, T., and Kulichikhin, V., Macromolecules, 2013, vol. 46, p. 257.CrossRefGoogle Scholar
  22. 22.
    Abduragimova, L.A., Rehbinder, P.A., and Serb-Serbina, N.N., Kolloidn. Zh., 1955, vol. 17, p. 184.Google Scholar
  23. 23.
    Goh, R., Leong, Y.-K., and Lehane, B., Rheol. Acta, 2011, vol. 50, p. 29.CrossRefGoogle Scholar
  24. 24.
    Uriev, N.B., Kolloidn. Zh., 2011, vol. 73, p. 90.Google Scholar
  25. 25.
    Uriev, N.B., Usp. Khim., 2004, vol. 73, p. 39.CrossRefGoogle Scholar
  26. 26.
    Malkin, A., Ilyin, S., Semakov, A., and Kulichikhin, V., Soft Matter, 2012, vol. 8, p. 2607.CrossRefGoogle Scholar
  27. 27.
    Moller, P.C.F., Fall, A., and Bonn, D., EPL, 2009, vol. 87, p. 38004.CrossRefGoogle Scholar
  28. 28.
    Moller, P., Fall, A., Chikkadi, V., et al., Philos. Trans. R. Soc. A, 2009, vol. 367, p. 5139.CrossRefGoogle Scholar
  29. 29.
    Masalova, I., Taylor, M., Kharatiyan, E., and Malkin, A.Ya., J. Rheol. (N. Y.), 2005, vol. 49, p. 839.CrossRefGoogle Scholar
  30. 30.
    Uriev, N.B., Svistunov, Yu.S., Potapov, A.N., and Starikov, V.A., Dokl. Akad. Nauk, 2007, vol. 416, p. 70.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. O. Ilyin
    • 1
  • G. S. Pupchenkov
    • 2
  • A. I. Krasheninnikov
    • 2
  • V. G. Kulichikhin
    • 1
  • A. Ya. Malkin
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Moscow State University of Instrument Engineering and InformaticsMoscowRussia

Personalised recommendations