Skip to main content
Log in

IR and Raman spectra of a water-methane disperse system. Computer experiment

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Methane adsorption by water clusters is studied using a flexible molecule model. An increase in the number of methane molecules surrounding a water cluster leads to their structurization in its vicinity. The pattern of the frequency spectrum of complex permittivity strongly changes after methane molecules are captured by the disperse water system. The integral intensity of IR absorption grows with methane adsorption, whereas the Raman spectrum of the system is considerably depleted. Methane absorption markedly enhances the reflectivity and IR emission ability of the disperse system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khalin, M.A. and Rasmussen, R.A., Atmos. Environ., 1987, vol. 21, p. 2445.

    Article  Google Scholar 

  2. Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., and Giuranna, M., Science (Washington, D. C.), 2004, vol. 306, p. 1758.

    Article  CAS  Google Scholar 

  3. Swain, M.R., Vasisht, G., and Tinetti, G., Nature (London), 2008, vol. 452, p. 329.

    Article  CAS  Google Scholar 

  4. Boudon, V., Rey, M., and Loete, M., J. Quant. Spectrosc. Radiat. Transfer, 2006, vol. 98, p. 394.

    Article  CAS  Google Scholar 

  5. Roush, T.L., J. Geophys. Res., 2001, vol. 106, p. 33315.

    Article  CAS  Google Scholar 

  6. Bernstein, M.P., Cruikshank, D.P., and Sandford, S.A., Icarus, 2006, vol. 181, p. 302.

    Article  CAS  Google Scholar 

  7. Hudgins, D.M., Sandford, S.A., Allamandola, L.J., and Tielens, A.G.G.M., Astrophys. J., Suppl. Ser., 1993, vol. 86, p. 713.

    Article  CAS  Google Scholar 

  8. Laaksonen, A. and Stilbs, P., Mol. Phys., 1991, vol. 74, p. 747.

    Article  CAS  Google Scholar 

  9. Chandler, D., Nature (London), 2002, vol. 417, p. 491.

    Article  CAS  Google Scholar 

  10. Chau, P.L. and Mancera, R.L., Mol. Phys., 1999, vol. 96, p. 109.

    Article  CAS  Google Scholar 

  11. Lambeth, B.P., Jr., Junghans, C., Kremer, K., Clementi, C., and Delle Site, L., J. Chem. Phys., 2010, vol. 133, p. 221101.

    Article  Google Scholar 

  12. Galashev, A.Y., Mol. Simul., 2010, vol. 36, p. 273.

    Article  CAS  Google Scholar 

  13. Galashev, A.E., Chukanov, V.N., Novruzov, A.N., and Novruzova, O.A., Teplofiz. Vys. Temp., 2006, vol. 44, p. 370.

    Google Scholar 

  14. Galashev, A.E., Novruzov, A.N., and Galasheva, A.A., Khim. Fiz., 2006, vol. 25, p. 26.

    CAS  Google Scholar 

  15. Dang, L.X. and Chang, T.-M., J. Chem. Phys., 1997, vol. 106, p. 8149.

    Article  CAS  Google Scholar 

  16. Jorgensen, W.L. and Madura, J.D., J. Am. Chem. Soc., 1983, vol. 105, p. 1407.

    Article  CAS  Google Scholar 

  17. Benedict, W.S., Gailar, N., and Plyler, E.K., J. Chem. Phys., 1956, vol. 24, p. 1139.

    Article  CAS  Google Scholar 

  18. Xantheas, S., J. Chem. Phys., 1996, vol. 104, p. 8821.

    Article  CAS  Google Scholar 

  19. Feller, D. and Dixon, D.A., J. Chem. Phys., 1996, vol. 100, p. 2993.

    Article  Google Scholar 

  20. Smith, D.E. and Dang, L.X., J. Chem. Phys., 1994, vol. 100, p. 3757.

    Article  CAS  Google Scholar 

  21. New, M.H. and Berne, B.J., J. Am. Chem. Soc., 1995, vol. 117, p. 7172.

    Article  CAS  Google Scholar 

  22. Spravochnik khimika. T. 1 (Chemist’s Handbook), Nikol’skii, B.P., Ed., Leningrad: Khimiya, 1971, vol. 1.

    Google Scholar 

  23. Haile, J.M., Molecular Dynamics Simulation. Elementary Methods, New York: Wiley, 1992.

    Google Scholar 

  24. Landau, L., Lifshitz, E., and Pitaevski, L., Electrodyinamics of Continuous Media, Oxford: Pergamon, 1984.

    Google Scholar 

  25. Fizicheskaya entsiklopediya. T. 1 (Physical Encyclopedia), Prokhorov, A.M., Ed., Moscow: Sovetskaya Entsiklopediya, 1988, vol. 1.

    Google Scholar 

  26. Koshlyakov, V.N., Zadachi dinamiki tverdogo tela i prikladnoi teorii giroskopov (Problems of Solid Body Dynamics and Applied Theory of Gyroscopes), Moscow: Nauka, 1985.

    Google Scholar 

  27. Sonnenschein, R., J. Comput. Phys., 1985, vol. 59, p. 347.

    Article  CAS  Google Scholar 

  28. Bresme, F., J. Chem. Phys., 2001, vol. 115, p. 7564.

    Article  CAS  Google Scholar 

  29. Neumann, M., J. Chem. Phys., 1985, vol. 82, p. 5663.

    Article  CAS  Google Scholar 

  30. Neumann, M., J. Chem. Phys., 1986, vol. 85, p. 1567.

    Article  CAS  Google Scholar 

  31. Bosma, W.B., Fried, L.E., and Mukamel, S., J. Chem. Phys., 1993, vol. 98, p. 4413.

    Article  CAS  Google Scholar 

  32. Stern, H.A. and Berne, B.J., J. Chem. Phys., 2001, vol. 115, p. 7622.

    Article  CAS  Google Scholar 

  33. Lemberg, H.L. and Stillinger, F.H., J. Chem. Phys., 1975, vol. 62, p. 1677.

    Article  CAS  Google Scholar 

  34. Rahman, A., Stillinger, F.H., and Lemberg, H.L., J. Chem. Phys., 1975, vol. 63, p. 5223.

    Article  CAS  Google Scholar 

  35. Saint-Martin, H., Hess, B., and Berendsen, H.J.C., J. Chem. Phys., 2004, vol. 120, p. 11133.

    Article  CAS  Google Scholar 

  36. Angell, C.A. and Rodgers, V., J. Chem. Phys., 1984, vol. 80, p. 6245.

    Article  CAS  Google Scholar 

  37. Goggin, P.L. and Carr, C., in Water and Aqueous Solutions, Neilson, G.W. and Enderby, J.E, Eds., Bristol: Adam Hilger, 1986, vol. 37, p. 149.

    Google Scholar 

  38. Chamberland, A., Belzile, R., and Cabana, A., Can. J. Chem., 1970, vol. 48, p. 1129.

    Article  CAS  Google Scholar 

  39. Vallee, P., Lafait, J., Ghomi, M., Jouanne, M., and Morhange, J.F., J. Mol. Struct., 2003, vols. 651–653, p. 371.

    Article  Google Scholar 

  40. Chou, I.-M., Sharma, A., Burruss, C., Shu, J., Mao, H.-K., Hemley, R.J., Goncharov, F., Stern, L.A., and Kirby, H., Proc. Natl. Acad. Sci. U. S. A., 2000, vol. 97, p. 13484.

    Article  CAS  Google Scholar 

  41. Ripmeester, J.A., Ratcliffe, C.I., Klug, D.D., and Tse, J.S., Ann. N. Y. Acad. Sci., 1994, vol. 715, p. 161.

    Article  CAS  Google Scholar 

  42. Nassar, R. and Bernath, P., J. Quant. Spectrosc. Radiat. Transfer, 2003, vol. 82, p. 279.

    Article  CAS  Google Scholar 

  43. Goodwin, S.P. and Whitworth, A., Astron. Astrophys., 2007, vol. 466, p. 943.

    Article  Google Scholar 

  44. Geballe, T.R., Noll, K.S., Leggett, S.K., Knapp, G.R., Fan, X., and Golimowski, D., in Ultracool Dwarfs: New Spectral Types L and T, Jones, H.R.A. and Steele, I.A, Eds., Berlin: Springer, 2001, p. 83.

  45. Lodders, K. and Fegley, B., Jr., Icarus, 2002, vol. 155, p. 393.

    Article  CAS  Google Scholar 

  46. Sengupta, S. and Krishan, V., Astron. Astrophys., 2000, vol. 358, p. L33.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.E. Galashev, 2013, published in Kolloidnyi Zhurnal, 2013, Vol. 75, No. 3, pp. 281–288.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galashev, A.E. IR and Raman spectra of a water-methane disperse system. Computer experiment. Colloid J 75, 253–260 (2013). https://doi.org/10.1134/S1061933X1303006X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X1303006X

Keywords

Navigation