Abstract
The electrosurface properties of nanoporous agglomerates of detonation nanodiamond (DND) particles purified from acidic impurities by dialysis are comprehensively investigated. Acid-base potentiometric titration, laser Doppler electrophoresis, and conductometry are employed to measure the adsorption isotherms \(\Gamma _{H^ + } (pH)\) and \(\Gamma _{OH^ - } (pH)\) of potential-determining ions, as well as the dependences of surface charge density σ0, electrophoretic mobility u e, and specific conductivity K p of the agglomerates on the pH = 3.5–10.5 of aqueous 0.0001–0.1 M KCl solutions. The obtained adsorption isotherms indicate heterogeneity of the DND surface, i.e., the presence of different proton-donor and proton-acceptor surface functional groups. Computer simulation of the adsorption isotherms is carried out for a DND surface containing two types of functional groups, namely, acidic carboxyl (-COOH) and amphoteric hydroxyl (-COH) groups, the predominant content of which is confirmed by FTIR spectroscopy data. The optimal values are determined for the reaction constants of ionization of these groups. It is revealed that the effective conductivity of the porous agglomerates is one or two orders of magnitude higher than the conductivity of equilibrium solutions. Corresponding values of electrokinetic potential ξ are calculated as functions of pH and KCl concentration from the electrophoretic mobility of the agglomerates using different equations of electrophoresis theory. It is shown that use of the Miller formula, which takes into account the electromigration fluxes of ions and electroosmotic flows of solutions in pores of dispersed particles, yields more correct ξ potential values for DND agglomerates.
This is a preview of subscription content, access via your institution.
References
Baidakova, M. and Vul’, A., J. Phys. D: Appl. Phys., 2007, vol. 40, p. 6300.
Schrand, A.M., Ciftan Hens, S.A., and Shenderova, O.A., Crit. Rev. Solid State Mater. Sci., 2009, vol. 34, p. 18.
Shenderova, O. and Vul’, A.Ya., in Synthesis, Properties and Applications of Ultrananocrystalline Diamond, Gruen, D., Ed., Dordrecht: Springer, 2005, p. 231.
Ultra-Nanocrystaline Diamond: Synthesis, Properties and Applications, Shenderova, O. and Gruen, D., Eds., New York: William Andrew, 2006.
Aleksenskiy, A., Baidakova, M., Osipov, V., and Vul’, A., in Nanodiamonds: Applications in Biology and Nanoscale Medicine, Dean Ho, Ed., Dordrecht: Springer, 2009.
Chiganova, G.A., Kolloidn. Zh., 2000, vol. 62, p. 272.
Gibson, ò., Shenderova, O., Luo, T.J.M., et al., Diamond Relat. Mater., 2009, vol. 18, p. 620.
Vul, A.Ya., Eydelman, E.D., Inakuma, M., and Osawa, E., Diamond Relat. Mater., 2007, vol. 16, p. 2023.
Xu, X., Yu, Z., Zhu, Y., and Wang, B., J. Solid State Chem., 2005, vol. 178, p. 688.
Tu, J.S., Perevedentseva, E., Chung, P.H., et al., J. Chem. Phys., 2006, vol. 125, p. 174713.
Aleksenskii, A.E., Vul’, A.Ya., and Yagovkina, M.A., RF Patent 2322389, 2008.
Zhukov, A.N., Gareeva, F.R., Aleksenskii, A.E., and Vul’, A.Ya., ÊÎlloidn. Zh., 2010, vol. 72, p. 635.
Street, N., Austral. J. Chem., 1956, vol. 9, p. 333.
Wagner, K.W., Die Isolierstoffe der Elektrotechnic, Berlin: Springer, 1924.
Delgado, A.V, González-Caballero, F., Hunter, R.J., et al., J. Colloid Interface Sci., 2007, vol. 309, p. 194.
Ohshima, H., J. Colloid Interface Sci., 1994, vol. 168, p. 269.
Surfactant Sci. Ser., 2002, vol. 106.
Encyclopedia of Surface and Colloid Science, Hubbard, A.T., Ed., New York: Marcel Dekker, 2002, vols. 1–4.
Dukhin, S.S. and Derjaguin, B.V., Electrophoresis, Ìoscow: Nauka, 1976.
Wiersema, P.H., Loeb, A.L., and Overbeek, J.T.G., J. Colloid Interface Sci., 1966, vol. 22, p. 78.
O’Brien, R.W. and White, L.R., J. Chem. Soc., Faraday Trans. 2, 1978, vol. 74, p. 1607.
Mangelsdorf, C.S. and White, L.R., J. Chem. Soc., Faraday Trans., 1998, vol. 94, p. 2441.
Ohshima, H., J. Colloid Interface Sci., 2001, vol. 239, p. 587.
Möller, J.H.N., Van Os, G.A.J., and Overbeek, J.Th.G., Trans. Faraday Soc., 1961, vol. 57, p. 325.
Levine, S. and Neale, G.H., J. Colloid Interface Sci., 1974, vol. 47, p. 520.
Ohshima, H., J. Colloid Interface Sci., 1997, vol. 188, p. 481.
Miller, N.P., Berg, J.C., and O’Brien, R.W., J. Colloid Interface Sci., 1992, vol. 153, p. 234.
Miller, N.P. and Berg, J.C., J. Colloid Interface Sci., 1993, vol. 159, p. 253.
Kosmulski, M., Surfactant Sci. Ser., 2001, vol. 102, p. 65.
Kosmulski M., Surfactant Sci. Ser., 2009, vol. 145, p. 66.
Ohshima, H., Healy, T.W., and White, L.R., J. Colloid Interface Sci., 1982, vol. 90, p. 17.
Turner, B.F. and Fein, J.B., Comput. Geosci., 2006, vol. 32, p. 1344.
Zhu, Y.W., Shen, X.Q., Zhu, Y., et al., Fiz. Tverd. Tela (S.-Peterburg), 2004, vol. 46, p. 665.
Xu, X., Yu, Zh., Zhu, Y., and Wang, B., Diamond Relat. Mater., 2005, vol. 14, p. 206.
Petrov, I., Shenderova, O., Grishko, V., et al., Diamond Relat. Mater., 2009, vol. 16, p. 2098.
Jee, A.Y. and Lee, M., Curr. Appl. Phys., 2009, vol. 9, p. 144.
Author information
Authors and Affiliations
Additional information
Original Russian Text © A.N. Zhukov, F.R. Gareeva, A.E. Aleksenskii, 2012, published in Kolloidnyi Zhurnal, 2012, Vol. 74, No. 4, pp. 483–491.
Rights and permissions
About this article
Cite this article
Zhukov, A.N., Gareeva, F.R. & Aleksenskii, A.E. Comprehensive study of electrosurface properties of detonation nanodiamond particle agglomerates in aqueous KCl solutions. Colloid J 74, 463–471 (2012). https://doi.org/10.1134/S1061933X12040163
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1061933X12040163
Keywords
- Electrophoretic Mobility
- Specific Conductivity
- Colloid Journal
- Background Electrolyte
- Electroosmotic Flow