Colloid Journal

, Volume 74, Issue 4, pp 472–482 | Cite as

Rheological peculiarities of concentrated suspensions

  • S. O. Ilyin
  • A. Ya. Malkin
  • V. G. Kulichikhin


The rheological properties of concentrated suspensions of metal oxides dispersed in transformer oil, which are used as electrorheological fluids, are systematically studied. Colloidal particles have intermediate sizes between nano- and microsized scales. Low-amplitude dynamic measurements show that the storage moduli of the examined suspensions are independent of frequency and these materials should be considered as solidlike elastic media. The storage modulus is proportional to the five-powdered particle volume concentration. At the same time, a transition through an apparent yield stress with a reduction in the viscosity by approximately six orders of magnitude is distinctly seen upon shear deformation. The character of the rheological behavior depends on the regime of suspension deformation. At very low shear rates, a steady flow is possible; however, upon an increase in the rate, an unsteady regime is realized with development of self-oscillations. When constant shear stresses are preset, in some range of stresses, thickening of the medium takes place, which can also be accompanied by self-oscillations. In order to gain insight into the nature of this effect, measurements are performed for samples with different volume/surface ratios, which show that, in some deformation regimes, suspension is separated into layers and slipping occurs along a low-viscosity layer with a thickness of several dozen microns. Direct observations show a distinct structural inhomogeneity of the flow. The separation and motion of layers with different compositions explain the transition to the flow with the lowest apparent Newtonian viscosity. Thus, the deformation of concentrated suspensions is associated with self-oscillations of stresses and slipping along a low-viscosity interlayer.


Shear Rate Storage Modulus Apparent Viscosity Colloid Journal Concentrate Suspension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abduragimova, L.A., Rehbinder, P.A., and Serb-Serbina, N.N., Kolloidn. Zh., 1955, vol. 17, p. 184.Google Scholar
  2. 2.
    Heymann, L., Peukert, S., and Aksel, N., Rheol. Acta, 2002, vol. 41, p. 307.CrossRefGoogle Scholar
  3. 3.
    Moan, M., Aubry, T., and Bossard, F., J. Rheol. (N. Y.), 2003, vol. 47, p. 1493.CrossRefGoogle Scholar
  4. 4.
    Potanin, A., J. Rheol. (N. Y.), 2004, vol. 48, p. 1279.CrossRefGoogle Scholar
  5. 5.
    Dullaert, K. and Mewis, J., J. Rheol. (N. Y.), 2005, vol. 49, p. 1213.CrossRefGoogle Scholar
  6. 6.
    Stokes, J.R., Telford, J.H., and Williamson, A.-M., J. Rheol. (N. Y.), 2005, vol. 49, p. 139.CrossRefGoogle Scholar
  7. 7.
    Coussot, P., Chateau, X., Tocquer, L., et al., J. Rheol. (N. Y.), 2006, vol. 50, p. 975.CrossRefGoogle Scholar
  8. 8.
    Franks, G.V., Zhou, Zh., Duin, N.J., and Boger, D.V., J. Rheol. (N. Y.), 2000, vol. 44, p. 759.CrossRefGoogle Scholar
  9. 9.
    Egres, R.G. and Wagner, N.J., J. Rheol. (N. Y.), 2005, vol. 49, p. 719.CrossRefGoogle Scholar
  10. 10.
    Uhlherr, P.H.T., Guo, J., Tiu, C., et al., J. Non-Newtonian Fluid Mech., 2005, vol. 125, p. 101.CrossRefGoogle Scholar
  11. 11.
    Khan, S.A. and Zoeller, N.J., J. Rheol. (N. Y.), 1993, vol. 37, p. 1225.CrossRefGoogle Scholar
  12. 12.
    Heymann, L., Peukert, S., and Aksel, N., J. Rheol. (N. Y.), 2002, vol. 46, p. 93.CrossRefGoogle Scholar
  13. 13.
    O’Brien, V.T. and Mackley, M.E., J. Rheol. (N. Y.), 2002, vol. 46, no. 3, p. 557.CrossRefGoogle Scholar
  14. 14.
    Lee, Y.S. and Wagner, N.J., Rheol. Acta, 2003, vol. 42, p. 199.Google Scholar
  15. 15.
    Il’in, S.O., Malkin, A.Ya., Korobko, E.V., et al., J. Eng. Phys. Thermophys., 2011, vol. 84, p. 1016.CrossRefGoogle Scholar
  16. 16.
    Buscall, R., Mills, P.D.A., Goodwin, J.W., and Lawson, D.W., J. Chem. Soc., Faraday Trans., 1988, vol. 84, p. 4249.CrossRefGoogle Scholar
  17. 17.
    Wyss, H.M., Deliormanli, A.M., Tervoort, E., and Gauckler, L.J., AIChE J., 2005, vol. 51, p. 134.CrossRefGoogle Scholar
  18. 18.
    Pavlov, V.P. and Vinogradov, G.V., Kolloidn. Zh., 1966, vol. 28, p. 424.Google Scholar
  19. 19.
    Shalopalkina, T.G. and Trapeznikov, A.A., Kolloidn. Zh., 1960, vol. 22, p. 735.Google Scholar
  20. 20.
    Mustafaev, E., Malkin, A.Ya., Plotnikova, E.P., and Vinogradov, G.V., Vysokomol. Soedin., 1964, vol. 6, p. 1515.Google Scholar
  21. 21.
    Boltenhagen, P., Hu, Y., Matthys, E.F., and Pine, D.J., Europhys. Lett., 1997, vol. 38, p. 389.CrossRefGoogle Scholar
  22. 22.
    Wunenburger, A.S., Colin, A., Leng, J., et al., Phys. Rev. Lett., 2001, vol. 86, p. 1374.CrossRefGoogle Scholar
  23. 23.
    Lootens, D., Damme, H.V., and Hebraud, P., Phys. Rev. Lett., 2003, vol. 90, p. 178301.CrossRefGoogle Scholar
  24. 24.
    Bagusat, F., Bohme, B., Schiller, P., and Mogel, H.-J., Rheol. Acta, 2005, vol. 44, p. 313.CrossRefGoogle Scholar
  25. 25.
    Malkin, A.Ya., Semakov, A.V., and Kulichikhin, V.G., Adv. Colloid Interface Sci., 2010, vol. 157, p. 75.CrossRefGoogle Scholar
  26. 26.
    Bashkirtseva, I.A., Zubarev, A.Yu., Iskakova, L.Yu., and Ryashko, L.B., Kolloidn. Zh., 2010, vol. 72, p. 147.Google Scholar
  27. 27.
    Subbotin, A.V., Malkin, A.Ya., and Kulichikhin, V.G., Adv. Colloid Interface Sci., 2011, vol. 162, p. 29.CrossRefGoogle Scholar
  28. 28.
    Berret, J.-F., Roux, D.C., and Porte, G., J. Phys. II, 1994, vol. 4, p. 1261.CrossRefGoogle Scholar
  29. 29.
    Lerouge, S. and Berret, J.-F., Adv. Polym. Sci., 2010, vol. 230, p. 1.CrossRefGoogle Scholar
  30. 30.
    Hu, Y.T., Palla, C., and Lips, A., J. Rheol. (N. Y.), 2008, vol. 52, p. 379.CrossRefGoogle Scholar
  31. 31.
    Zhou, L., Vasquez, P.A., Cook, L.P., and McKinley, G.H., J. Rheol. (N. Y.), 2008, vol. 52, p. 591.CrossRefGoogle Scholar
  32. 32.
    Tapadia, P., Ravindranath, S., and Wang, S.-Q., Phys. Rev. Lett., 2006, vol. 96, p. 196001.CrossRefGoogle Scholar
  33. 33.
    Ilyin, S., Roumyantseva, T., Spiridonova, V., et al., Soft Matter, 2011, vol. 7, p. 9090.CrossRefGoogle Scholar
  34. 34.
    Ur’ev, N.B., Colloids Surf. A., 1994, vol. 8, p. 1.CrossRefGoogle Scholar
  35. 35.
    Ur’ev, N.B., Uspekhy Khimii, 2004, vol. 73, p. 39.Google Scholar
  36. 36.
    Malkin, A.Ya. and Chalykh, A.E., Diffuziya i vyazkost’. Metody izmerenii (Diffusion and Viscosity. Measurement Methods), Moscow: Khimiya, 1979.Google Scholar
  37. 37.
    Chen, L.B., Zukoski, C.F., Ackerson, B.J., et al., Phys. Rev. Lett., 1992, vol. 69, p. 688.CrossRefGoogle Scholar
  38. 38.
    Vermant, J. and Solomon, M.J., J. Phys.: Condens. Matter, 2005, vol. 17, p. 187.CrossRefGoogle Scholar
  39. 39.
    Miesowicz, M., Nature (London), 1935, vol. 136, p. 261.Google Scholar
  40. 40.
    Miesowicz, M., Nature (London), 1946, vol. 158, p. 27.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. O. Ilyin
    • 1
  • A. Ya. Malkin
    • 1
  • V. G. Kulichikhin
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations