Abstract
NMR methods are employed to study the effects of inorganic salts, solvents, and guest molecules of methylviologen (MV2+) and choline (Ch+) on the aggregation properties of water-soluble tetramethylene-sulfonate-substituted calix[4]resorcinarenes containing methyl (1), amyl (2), and heptyl (3) substituents in the lower rim. It is established that, in aqueous solutions at concentrations of 1–10 mM, compound 1 exists in the monomeric form; the size of aggregates of amphiphilic compound 2 gradually increases (aggregation number varies from 1 to 20); and hydrophobic compound 3 dissolves only in slightly alkaline aqueous solutions to form large micellar aggregates. For macrocycles 2 and 3, which are inclined to aggregation, the aggregate sizes depend on the concentration, pH, and ionic strength of solutions, as well as on the presence of organic solvents. Macrocycle 1 binds guest molecules Ch+ and MV2+ to yield inclusion complexes. In the presence of aggregates of substance 2, the binding of guest molecules is more efficient and they are encapsulated between the rim of one molecule and the tail of another molecule of compound 2. The presence of guest molecules enhances the aggregation of macrocycle 2. In the case of compound 3 solutions, guest Ch+ molecules are predominantly localized in the hydrophobic environment of alkyl substituents of the host.
This is a preview of subscription content, access via your institution.
References
Bhushan, B., Springer Handbook of Nanotechnology, New York: Springer, 2004.
Yushkova, E. and Stoikov, I., Langmuir, 2009, vol. 25, p. 4919.
Guan, B., Jiang, M., Yang, X., and Lianga, Q., Chem. Soft Matter, 2008, vol. 4, p. 1393.
Cai, W., Wang, G.-T., Xu, Y.-X., et al., J. Am. Chem. Soc., 2008, vol. 130, p. 6936.
Liu, Y., Ke, Ch.-F., Zhang, H.-Y., Cui, J., and Ding, F., J. Am. Chem. Soc., 2008, vol. 130, p. 600.
Jain, R., Ernst, J.T., Kutzki, O., et al., Mol. Diversity, 2004, vol. 8, p. 89.
Shahgaldian, P., Sciotti, M.A., and Pieles, U., Langmuir, 2008, vol. 24, p. 8522.
Guo, D.-Sh., Wang, K., and Liu, Y., J. Inclusion Phenom. Macrocycl. Chem., 2008, vol. 62, p. 1.
Kobayashi, K., Asakawa, Y., Kato, Y., and Aoyama, Y., J. Am. Chem. Soc., 1992, vol. 114, p. 10307.
Yanagihara, R., Tominaga, M., and Aoyama, Y., Org. Chem., 1994, vol. 59, p. 6865.
Fujimoto, T., Yanagihara, R., Kobayashi, K., and Aoyama, Y., Bull. Chem. Soc. Jpn., 1995, vol. 68, p. 2113.
Credi, A., Dumas, S., Silvi, S., et al., Org. Chem., 2004, vol. 69, p. 5881.
Leverd, P.C., Berthault, P., Zance, M., and Nierlich, M., Eur. J. Org. Chem., 2000, p. 133.
Selkti, M., Coleman, A.W., and Nicolis, I., Chem. Commun., 2000, p. 161.
Lee, M., Lee, S.-J., and Jian, L.-H., J. Am. Chem. Soc., 2004, vol. 126, p. 12724.
Ryu, E.-H. and Zhao, Y., Org. Chem., 2006, vol. 71, p. 9491.
Shahgaldian, P., Pieles, U., and Hegner, M., Langmuir, 2005, vol. 21, p. 6503.
Houmadi, S., Coquire, D., Legrand, L., et al., Langmuir, 2007, vol. 23, p. 4849.
Kazakova, E.Kh., Makarova, N.A., Ziganshina, A.U., and Habicher, W.D., Tetrahedron Lett., 2000, vol. 41, p. 10111.
Kazakova, E.Kh., Syakaev, V.V., Morozova, Ju.E., et al., J. Inclusion Phenom. Macrocycl. Chem., 2007, vol. 59, p. 143.
Morozova, Ju.E., Kazakova, E.Kh., Gubanov, E.Ph., et al., J. Inclusion Phenom. Macrocycl. Chem., 2006, vol. 55, p. 173.
Morozova, Yu.E., Shalaeva, Ya.V., Makarova, N.A., et al., Izv. Akad. Nauk, Ser. Khim., 2009, p. 95.
Syakaev, V.V., Mustafina, A.R., Elistratova, J.G., et al., Supramol. Chem., 2008, vol. 20, p. 453.
Consoli, M.L., Granata, G., Lo Nigro, R., et al., Langmuir, 2008, vol. 24, p. 6194.
Aakeroy, Ch., Schultheiss, N., and Desper, Jh., Cryst. Eng. Commun., 2007, vol. 9, p. 211.
Pappalardo, S., Villari, V., Slovak, S., et al., Chem.-Eur. J., 2007, vol. 13, p. 8164.
Haley, Th.J., Clin. Toxicol., 1979, vol. 14, p. 1.
Cohen, Y., Avram, L., and Frish, L., Angew. Chem., Int. Ed. Engl., 2005, vol. 44, p. 520.
Brand, T., Cabrita, E.J., and Berger, S., Prog. Nucl. Magn. Reson. Spectrosc., 2005, vol. 46, p. 159.
Yatsimirsky, A.K., Principles and Methods in Supramolecular Chemistry, New York: Wiley, 2000.
Neuhaus, D. and Williamson, M.P., The Nuclear Overhauser Effect in Structural and Conformational Analysis, 2nd ed., New York: Wiley-VCH, 2000.
De la Torre, J.G., J. Magn. Reson., 2000, vol. 147, p. 138.
Shalaeva, Ya.V., Yanilkin, V.V., Morozova, Yu.E., et al., Kolloidn. Zh., 2010, vol. 72, p. 258.
Schneider, H.J., Guettes, D., and Schneider, U., J. Am. Chem. Soc., 1988, vol. 110, p. 6449.
Inouye, M., Hashimoto, K., and Isagawa, K., J. Am. Chem. Soc., 1994, vol. 116, p. 5517.
Schneider, H.J. and Schneider, U., Org. Chem., 1987, vol. 52, p. 1613.
Koh, K.N., Araki, K., Ikeda, A., et al., J. Am. Chem. Soc., 1996, vol. 118, p. 755.
Aoyama, Y., Hayashida, O., Kato, M., and Akagi, K., J. Am. Chem. Soc., 1999, vol. 121, p. 11597.
Hayashida, O., Akagi, K., Matsuo, A., et al., J. Am. Chem. Soc., 2003, vol. 125, p. 594.
Aoyama, Y., Chem.-Eur. J., 2004, vol. 10, p. 588.
Author information
Authors and Affiliations
Additional information
Original Russian Text © V.V. Syakaev, Ya.V. Shalaeva, E.Kh. Kazakova, Yu.E. Morozova, N.A. Makarova, A.I. Konovalov, 2012, published in Kolloidnyi Zhurnal, 2012, Vol. 74, No. 3, pp. 371–380.
Rights and permissions
About this article
Cite this article
Syakaev, V.V., Shalaeva, Y.V., Kazakova, E.K. et al. Aggregation and complexation in a series of tetramethylenesulfonate-substituted calix[4]resorcinarenes. Colloid J 74, 346–355 (2012). https://doi.org/10.1134/S1061933X12030118
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1061933X12030118
Keywords
- Macrocycle
- Guest Molecule
- Aggregate Size
- Methylviologen
- Colloid Journal