Colloid Journal

, 73:646 | Cite as

Gelation in dilute aqueous L-cysteine-AgNO3 solutions

  • S. O. Ilyin
  • V. M. Spiridonova
  • V. S. Savelyeva
  • M. M. Ovchinnikov
  • S. D. Khizhnyak
  • E. I. Frenkin
  • P. M. Pakhomov
  • A. Ya. Malkin
Article

Abstract

Gelation in dilute aqueous L-cysteine solutions containing various electrolytes is studied by rotational viscometry in different dynamic regimes. It is revealed that gels are formed at rather low concentrations of cysteine of no higher than 0.1 vol %. In the linear range of mechanical actions, gels of all examined compositions behave as elastic solid-like media; their elastic moduli, which lie in a range of 10–100 Pa, are independent of frequency and their mechanical losses are low. However, these gels exhibit dualistic properties and can flow at low shear stresses with a Newtonian viscosity on the order of 103–105 Pa s. On reaching a critical stress (yield point), gels are destroyed, their viscosity decreases by six to seven decimal orders of magnitude, and they are transformed into low-viscosity liquids. At rest, the initial structure and properties are recovered. Mechanisms of percolation network formation are proposed.

Keywords

Yield Point Colloid Journal Effective Viscosity Dualistic Property Viscous Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Papkov, S.P., Studneobraznoe sostoyanie polimerov (The Gel State of Polymers), Moscow: Khimiya, 1974.Google Scholar
  2. 2.
    Abdurakhimova, L.A., Rehbinder, P.A., and Serb-Serbina, N.N., Kolloidn. Zh., 1955, vol. 17, p. 184.Google Scholar
  3. 3.
    Pakhomov, P.M., Ovchinnikov, M.M., Khizhnyak, S.D., Lavrienko, M.V., Nierling, W., and Leshner, M.D., Kolloidn. Zh., 2004, vol. 66, p. 73.Google Scholar
  4. 4.
    Spiridonova, V.M., Savelyeva, V.S., Ovchinnikov, M.M., Khizhnyak, S.D., and Pakhomov, P.M., Polzunovsk. Vestn., 2009, no. 3, p. 324.Google Scholar
  5. 5.
    Malkin, A.Ya. and Isaev, A., Rheology: concepts, methods and applications, Toronto, ChemTec Publ., 2006.Google Scholar
  6. 6.
    Malkin, A.Ya., Sabsai, O.Yu., Verebskaya, E.A., Zolotarev, V.A., and Vinogradov, G.V., Kolloidn. Zh., 1976, vol. 38, p. 181.Google Scholar
  7. 7.
    Uhlherr, P.H.T., Guo, J., Tiu, C., Zhang, X.M., Zhou, J.Z.Q., and Fang, T.N., J. Non-Newtonian Fluid Mech., 2005, vol. 125, p. 101.CrossRefGoogle Scholar
  8. 8.
    Caton, F. and Baravian, C., Rheol. Acta, 2008, vol. 47, p. 601.CrossRefGoogle Scholar
  9. 9.
    Masalova, I., Malkin, A.Ya., and Foudazi, R., Appl. Rheol., 2008, vol. 18.Google Scholar
  10. 10.
    Sevier, C.S. and Keiser, C.A., Nat. Rev. Mol. Cell Biol., 2002, vol. 3, p. 836.CrossRefGoogle Scholar
  11. 11.
    Krishnan, C.V., Garnett, M., and Chu, B., Int. J. Electrochem. Sci., 2008, vol. 3, p. 854.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • S. O. Ilyin
    • 1
  • V. M. Spiridonova
    • 2
  • V. S. Savelyeva
    • 2
  • M. M. Ovchinnikov
    • 3
  • S. D. Khizhnyak
    • 2
  • E. I. Frenkin
    • 1
  • P. M. Pakhomov
    • 2
  • A. Ya. Malkin
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Tver State UniversityTverRussia
  3. 3.Tver State Medical AcademyTverRussia

Personalised recommendations