Skip to main content

Aggregation of inclusion complexes formed by noncovalent columnar structures based on α- and γ-cyclodextrins and poly(alkylene glycols)

Abstract

Kinetic analysis of the aggregation of complexes formed by columnar types of α- and γ-cyclodextrins (α-CDcol and γ-CDcol) and poly(alkylene glycols) is performed by the dynamic light scattering method. For comparison, analogous studies were conducted for systems containing initial α- and γ-cyclodextrins (α-CD and γ-CD). Upon the aggregation of systems containing α-CD, the number of nuclei with critical sizes slowly increases at the initial part of kinetic curve throughout the solution bulk; when some limiting concentration and sizes of formed aggregates are achieved, the system is transformed into the gel-like state. The aggregation of γ-CDcol-poly(ethylene glycol) system proceeds into two stages. At the first fast stage, aggregates are formed by particles representing single-strand inclusion complexes composed of one γ-CDcol molecule and two units of ethylene oxide. At the second, much slower stage, aggregates are formed by two-strand complexes composed of one γ-CDcol molecule and four units of ethylene oxide. It follows from the comparison of aggregative properties of γ-CDcol-poly(ethylene glycol) and γ-CDcol-poly(propylene glycol) systems that the rate of aggregation is much higher in the second case.

This is a preview of subscription content, access via your institution.

References

  1. Topchieva, I.N., Panova, I.G., Kurganov, B.I, et al., Kolloidn. Zh., 2008, vol. 70, p. 392.

    Google Scholar 

  2. Szejtly, J., Chem. Rev., 1998, vol. 98, p. 1743.

    Article  Google Scholar 

  3. Topchieva, I.N., Panova, I.G., Popova, E.I, et al., Vysokomol. Soedin., Ser. A, 2002, vol. 44, p. 5882.

    Google Scholar 

  4. Panova, I.G., Matukhina, E.V., Gerasimov, V.I., and Topchieva, I.N., Kolloidn. Zh., 2006, vol. 68, p. 72.

    Google Scholar 

  5. Szejtly, J., Cyclodextrins and Their Inclusion Complexes, Budapest: Academiai Kiado, 1982.

    Google Scholar 

  6. He, Y., Fu, P., Shen, X., and Gao, H., Micron, 2008, vol. 39, p. 495.

    Article  CAS  Google Scholar 

  7. Coleman, A.W. and Nicolis, I., J. Inclusion Phenom. Mol. Recogn. Chem., 1992, vol. 13, p. 139.

    Article  CAS  Google Scholar 

  8. Gaitano, G.G. and Brown, W., J. Phys. Chem., 1997, vol. 101, p. 710.

    CAS  Google Scholar 

  9. Polarz, S., Smarsly, B., Bronstein, L., and Antonietti, M., Angew. Chem., Int. Ed. Engl., 2001, vol. 40, p. 4417.

    Article  CAS  Google Scholar 

  10. Topchieva, I.N., Spiridonov, V.V., Kalashnikov, F.A., and Kurganov, B.I., Kolloid. Zh., 2006, vol. 68, p. 105.

    Google Scholar 

  11. Komiyama, M. and Bender, M.L., in The Chemistry of Enzyme Action, Ed. by Page, M.J., 1984, p. 505.

  12. Pilai, O. and Panchagnula, R., Curr. Opin. Chem. Biol., 2001, vol. 5, p. 447.

    Article  Google Scholar 

  13. Harada, A., Li, J., and Kamachi, M., J. Chem. Soc., Chem. Commun., 1990, vol. 19, p. 1322.

    Article  Google Scholar 

  14. Harada, A., Li, J., and Kamachi, M., Macromolecules, 1993, vol. 26, p. 5698.

    Article  CAS  Google Scholar 

  15. Harada, A., Li, J., and Kamachi, M., Nature (London), 1994, vol. 370, p. 128.

    Article  Google Scholar 

  16. Panova, I.G., Gerasimov, V.I., Kalashnikov, F.A., and Topchieva, I.N., Dokl. Akad. Nauk, 1997, vol. 355, p. 641.

    Google Scholar 

  17. Panova, I.G., Gerasimov, V.I., Kalashnikov, F.A., and Topchieva, I.N., Vysokomol. Soedin., Ser. B, 1998, vol. 40, p. 2077.

    CAS  Google Scholar 

  18. Panova, I.G., Matukhina, E.V., Popova, E.I, et al., Vysokomol. Soedin., Ser. A, 2001, vol. 43, p. 1228.

    CAS  Google Scholar 

  19. Topchieva, I.N., Gerasimov, V.I., Panova, I.G., et al., Vysokomol. Soedin., Ser. A, 1998, vol. 40, p. 310.

    CAS  Google Scholar 

  20. Panova, I.G., Gerasimov, V.I., and Topchieva, I.N., Vysokomol. Soedin., Ser. B, 1998, vol. 40, p. 1681.

    CAS  Google Scholar 

  21. Popova, E.I., Topchieva, I.N., Zhavoronkova, E.V, et al., Vysokomol. Soedin., Ser. A, 2002, vol. 44, p. 85.

    CAS  Google Scholar 

  22. Ceccato, M., Lo Nostro, P., and Baglioni, P., Langmuir, 1997, vol. 13, p. 2436.

    Article  CAS  Google Scholar 

  23. Lo Nostro, P., Lopes, J.R., and Cardelli, C., Langmuir, 2001, vol. 17, p. 4610.

    Article  Google Scholar 

  24. Becheri, A., Lo Nostro, P., Ninham, B.W., and Baglioni, P., J. Phys. Chem., B, 2003, vol. 107, p. 3979.

    Article  CAS  Google Scholar 

  25. Connors, K.A., Chem. Rev., 1997, vol. 97, p. 1325.

    Article  CAS  Google Scholar 

  26. Rusa, C.C., Bullions, T.A., Fox, J., et al., Langmuir, 2002, vol. 18, p.10016.

    Article  CAS  Google Scholar 

  27. Panova, I.G., Matuchina, E.V., and Topchieva, I.N., Polym. Bull. (Berlin), 2007, vol. 58, p. 737.

    Article  CAS  Google Scholar 

  28. Markossian, K.A., Khanova, H.A., Kleimenov, S.Yu., et al., Biochemistry, 2006, vol. 45, p. 13375.

    Article  CAS  Google Scholar 

  29. Gonzalez-Gaitano, G., Rodriguez, P., and Isasi, J.R., J. Inclusion Phenom. Macrocycl. Chem., 2002, vol. 44, p. 101.

    Article  CAS  Google Scholar 

  30. Popova, E.I., Kazarin, L.A., and Topchieva, I.N., Vestn. Mosk. Univ., Ser. 2: Khim., 2001, vol. 42, p. 125.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.N. Topchieva, I.G. Panova, V.V. Spiridonov, E.V. Matukhina, B.I. Kurganov, 2009, published in Kolloidnyi Zhurnal, 2009, Vol. 71, No. 4, pp. 544–552.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Topchieva, I.N., Panova, I.G., Spiridonov, V.V. et al. Aggregation of inclusion complexes formed by noncovalent columnar structures based on α- and γ-cyclodextrins and poly(alkylene glycols). Colloid J 71, 550–558 (2009). https://doi.org/10.1134/S1061933X09040188

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X09040188

Keywords

  • Cyclodextrin
  • Inclusion Complex
  • Ethylene Oxide
  • Macrocycle
  • Kinetic Curve