Abstract
Kinetic analysis of the aggregation of complexes formed by columnar types of α- and γ-cyclodextrins (α-CDcol and γ-CDcol) and poly(alkylene glycols) is performed by the dynamic light scattering method. For comparison, analogous studies were conducted for systems containing initial α- and γ-cyclodextrins (α-CD and γ-CD). Upon the aggregation of systems containing α-CD, the number of nuclei with critical sizes slowly increases at the initial part of kinetic curve throughout the solution bulk; when some limiting concentration and sizes of formed aggregates are achieved, the system is transformed into the gel-like state. The aggregation of γ-CDcol-poly(ethylene glycol) system proceeds into two stages. At the first fast stage, aggregates are formed by particles representing single-strand inclusion complexes composed of one γ-CDcol molecule and two units of ethylene oxide. At the second, much slower stage, aggregates are formed by two-strand complexes composed of one γ-CDcol molecule and four units of ethylene oxide. It follows from the comparison of aggregative properties of γ-CDcol-poly(ethylene glycol) and γ-CDcol-poly(propylene glycol) systems that the rate of aggregation is much higher in the second case.
This is a preview of subscription content, access via your institution.
References
Topchieva, I.N., Panova, I.G., Kurganov, B.I, et al., Kolloidn. Zh., 2008, vol. 70, p. 392.
Szejtly, J., Chem. Rev., 1998, vol. 98, p. 1743.
Topchieva, I.N., Panova, I.G., Popova, E.I, et al., Vysokomol. Soedin., Ser. A, 2002, vol. 44, p. 5882.
Panova, I.G., Matukhina, E.V., Gerasimov, V.I., and Topchieva, I.N., Kolloidn. Zh., 2006, vol. 68, p. 72.
Szejtly, J., Cyclodextrins and Their Inclusion Complexes, Budapest: Academiai Kiado, 1982.
He, Y., Fu, P., Shen, X., and Gao, H., Micron, 2008, vol. 39, p. 495.
Coleman, A.W. and Nicolis, I., J. Inclusion Phenom. Mol. Recogn. Chem., 1992, vol. 13, p. 139.
Gaitano, G.G. and Brown, W., J. Phys. Chem., 1997, vol. 101, p. 710.
Polarz, S., Smarsly, B., Bronstein, L., and Antonietti, M., Angew. Chem., Int. Ed. Engl., 2001, vol. 40, p. 4417.
Topchieva, I.N., Spiridonov, V.V., Kalashnikov, F.A., and Kurganov, B.I., Kolloid. Zh., 2006, vol. 68, p. 105.
Komiyama, M. and Bender, M.L., in The Chemistry of Enzyme Action, Ed. by Page, M.J., 1984, p. 505.
Pilai, O. and Panchagnula, R., Curr. Opin. Chem. Biol., 2001, vol. 5, p. 447.
Harada, A., Li, J., and Kamachi, M., J. Chem. Soc., Chem. Commun., 1990, vol. 19, p. 1322.
Harada, A., Li, J., and Kamachi, M., Macromolecules, 1993, vol. 26, p. 5698.
Harada, A., Li, J., and Kamachi, M., Nature (London), 1994, vol. 370, p. 128.
Panova, I.G., Gerasimov, V.I., Kalashnikov, F.A., and Topchieva, I.N., Dokl. Akad. Nauk, 1997, vol. 355, p. 641.
Panova, I.G., Gerasimov, V.I., Kalashnikov, F.A., and Topchieva, I.N., Vysokomol. Soedin., Ser. B, 1998, vol. 40, p. 2077.
Panova, I.G., Matukhina, E.V., Popova, E.I, et al., Vysokomol. Soedin., Ser. A, 2001, vol. 43, p. 1228.
Topchieva, I.N., Gerasimov, V.I., Panova, I.G., et al., Vysokomol. Soedin., Ser. A, 1998, vol. 40, p. 310.
Panova, I.G., Gerasimov, V.I., and Topchieva, I.N., Vysokomol. Soedin., Ser. B, 1998, vol. 40, p. 1681.
Popova, E.I., Topchieva, I.N., Zhavoronkova, E.V, et al., Vysokomol. Soedin., Ser. A, 2002, vol. 44, p. 85.
Ceccato, M., Lo Nostro, P., and Baglioni, P., Langmuir, 1997, vol. 13, p. 2436.
Lo Nostro, P., Lopes, J.R., and Cardelli, C., Langmuir, 2001, vol. 17, p. 4610.
Becheri, A., Lo Nostro, P., Ninham, B.W., and Baglioni, P., J. Phys. Chem., B, 2003, vol. 107, p. 3979.
Connors, K.A., Chem. Rev., 1997, vol. 97, p. 1325.
Rusa, C.C., Bullions, T.A., Fox, J., et al., Langmuir, 2002, vol. 18, p.10016.
Panova, I.G., Matuchina, E.V., and Topchieva, I.N., Polym. Bull. (Berlin), 2007, vol. 58, p. 737.
Markossian, K.A., Khanova, H.A., Kleimenov, S.Yu., et al., Biochemistry, 2006, vol. 45, p. 13375.
Gonzalez-Gaitano, G., Rodriguez, P., and Isasi, J.R., J. Inclusion Phenom. Macrocycl. Chem., 2002, vol. 44, p. 101.
Popova, E.I., Kazarin, L.A., and Topchieva, I.N., Vestn. Mosk. Univ., Ser. 2: Khim., 2001, vol. 42, p. 125.
Author information
Authors and Affiliations
Additional information
Original Russian Text © I.N. Topchieva, I.G. Panova, V.V. Spiridonov, E.V. Matukhina, B.I. Kurganov, 2009, published in Kolloidnyi Zhurnal, 2009, Vol. 71, No. 4, pp. 544–552.
Rights and permissions
About this article
Cite this article
Topchieva, I.N., Panova, I.G., Spiridonov, V.V. et al. Aggregation of inclusion complexes formed by noncovalent columnar structures based on α- and γ-cyclodextrins and poly(alkylene glycols). Colloid J 71, 550–558 (2009). https://doi.org/10.1134/S1061933X09040188
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1061933X09040188
Keywords
- Cyclodextrin
- Inclusion Complex
- Ethylene Oxide
- Macrocycle
- Kinetic Curve