Skip to main content

Properties of carrageenan gels with immobilized lysozyme

Absract

Rheological properties of 3% carrageenan gels formed in 0.4 M sodium chloride solution in the presence of lysozyme are studied in detail. It is shown that the addition of protein results in an increase in the gel-sol transition temperature by 2°C (transition temperature of 3% gel is 48°C, lysozyme concentration is 0.5 mg/ml). Based on the frequency dependences of dynamic moduli at various temperatures, it is revealed that systems possess viscoelastic properties at low frequencies. Within a wide frequency range up to gel-sol transition temperature, systems become elastoviscous and, at higher frequencies, they demonstrate forced transition to glassy state. It is shown that carrageenan inhibits enzyme activity of lysozyme. The interaction between enzyme and carrageenan leads to changes in lysozyme conformations, i.e., the content of α-helices increases and that of turns decreases. It is demonstrated for the first time that, in the presence of a so-called nonspecific (for the gelation of carrageenan) sodium ion, it is possible to prepare gels with the necessary structure and rheological properties and gel-sol transition temperature. These gels can release a lysozyme under the conditions of transmucosal prolonged delivery.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Lianli, L., PhD Thesis (New York, 2000).

  2. 2.

    Paoletti, S., Delbin, F., Cesaro, A., and Gransdalen, H., Macromolecules, 1985, vol. 18, p. 1834.

    Article  CAS  Google Scholar 

  3. 3.

    Millan, A.J., Moreno, R., and Nieto, M.I., J. Eur. Ceram. Soc., 2002, vol. 22, p. 2209.

    Article  CAS  Google Scholar 

  4. 4.

    Stevenson, T.T. and Furneaux, R.H., Carbohydr. Res., 1991, vol. 210, p. 277.

    Article  CAS  Google Scholar 

  5. 5.

    Buck, C.B., Thompson, C.D., Roberts, J.N., et al., Publ. Libr. Sci. Pathog., 2006, vol. 2, p. 69.

    Google Scholar 

  6. 6.

    Buck, C.B., Day, P.M., Thompson, C.D., et al., Proc. Natl. Acad. Sci. U. S. A., 2006, vol. 103, p. 1516.

    Article  CAS  Google Scholar 

  7. 7.

    Rochas, C. and Landry, S., Carbohydr. Polym., 1987, vol. 7, p. 435.

    Article  CAS  Google Scholar 

  8. 8.

    Rees, D.A., Adv. Carbohydr. Chem. Biochem., 1969, vol. 24, p. 267.

    Article  CAS  Google Scholar 

  9. 9.

    Lahaye, M., J. Appl. Phycol., 2001, vol. 13, p. 173.

    Article  CAS  Google Scholar 

  10. 10.

    Chronakas, I., Piculell, L., and Borgstrom, J., Carbohydr. Polym., 1996, vol. 39, p. 1451.

    Google Scholar 

  11. 11.

    Ikeda, S. and Nishinari, K., J. Agric. Food Chem., 2001, vol. 49, p. 4436.

    Article  CAS  Google Scholar 

  12. 12.

    Siwiski, A., Klein, P., Kiczka, W., et al., in Modulators of Immune Responses. The Evolutionary Trail, Stolen, J., Fletcher, T., Bayne, C., et al., Eds., Fair-Haven: SOS, 1996, vol. 18, p. 221.

    Google Scholar 

  13. 13.

    Usov, A.I., in Progress khimii uglevodov (Progress in Carbohydrate Chemistry), Torgov, I.V., Ed., Moscow: Nauka, 1985, p. 77.

    Google Scholar 

  14. 14.

    Usov, A.I., Food Hydrocolloids, 1992, vol. 6, p. 9.

    CAS  Article  Google Scholar 

  15. 15.

    Usov, A.I., Food Hydrocolloids, 1998, vol. 12, p. 301.

    Article  CAS  Google Scholar 

  16. 16.

    Matsuhiro, B., Hydrobiologia, 1996, vols. 326/327, p. 481.

    Article  CAS  Google Scholar 

  17. 17.

    Tager, A.A., Fiziko-khimiya polimerov (Physical Chemistry of Polymers), Moscow: Goskhimizdat, 1963.

    Google Scholar 

  18. 18.

    Croguennoc, P., Meunier, V., Durand, D., and Tako, N., Macromolecules, 2000, vol. 33, p. 7471.

    Article  CAS  Google Scholar 

  19. 19.

    Schramm, G., A Practical Approach to Rheology and Rheometry, Karlsruhe: Haake, 1994.

    Google Scholar 

  20. 20.

    Kristiansen, A., Varum, K, and Grasdalen, H., Eur. J. Biochem., 1998, vol. 251, p. 335.

    Article  CAS  Google Scholar 

  21. 21.

    Berezin, I.V. and Martinek, K., Osnovy fizicheskoi khimii fermentativnogo kataliza (Fundamentals of Physical Chemistry of Enzyme Catalysis), Moscow: Vysshaya Shkola, 1977.

    Google Scholar 

  22. 22.

    Bandekar, J., Biochim. Biophys. Acta, 1992, vol. 1120, p. 123.

    CAS  Google Scholar 

  23. 23.

    Krimm, S. and Bandekar, J., Adv. Protein Chem., 1986, vol. 38, p. 181.

    Article  CAS  Google Scholar 

  24. 24.

    The Protein Protocols Handbook, Walker, J.M.. Ed., Totowa: Human, 2002.

    Google Scholar 

  25. 25.

    Levitt, M. and Greer, J., J. Mol. Biol., 1977, vol. 114, p. 181.

    Article  CAS  Google Scholar 

  26. 26.

    Johansson, L. and Lofroth, J.-E., J. Chem. Phys., 1993, vol. 98, p. 7471.

    Article  CAS  Google Scholar 

  27. 27.

    Phillips, R.J., Deen, W.M., and Brady, J.F., AIChE J., 1989, vol. 35, p. 1761.

    Article  CAS  Google Scholar 

  28. 28.

    Johnson, E.M., Berk, D.A., Jain, R.K., and Deen, W.M., Biophys. J., 1996, vol. 70, p. 1017.

    Article  CAS  Google Scholar 

  29. 29.

    Waltner, B., Loren, N., Nyden, M., and Hermansson, A.M., Langmuir, 2006, vol. 22, p. 8221.

    Article  CAS  Google Scholar 

  30. 30.

    Viebke, C., Borgstrom, J., and Piculell, L., Carbohydr. Polym., 1995, vol. 27, p. 145.

    Article  CAS  Google Scholar 

  31. 31.

    Pekcan, A., Kara, S., and Arda, E., Compos. Interfaces, 2007, vol. 14, p. 1.

    Article  CAS  Google Scholar 

  32. 32.

    Meunier, V., Taco, N., and Durand, D., Macromolecules, 2000, vol. 33, p. 2497.

    Article  CAS  Google Scholar 

  33. 33.

    Morris, V., Kirby, A., and Gunning, A., Prog. Colloid Polym. Sci., 1999, vol. 114, p. 102.

    Article  CAS  Google Scholar 

  34. 34.

    Borgstrom, J., Piculell, L., Viebke, C., and Talmon, Y., J. Biol. Macromol., 1996, vol. 18, p. 223.

    Article  CAS  Google Scholar 

  35. 35.

    Viebke, C., Piculell, J., and Nilsson, S., Macromolecules, 1994, vol. 27, p. 4160.

    Article  CAS  Google Scholar 

  36. 36.

    Millane, R., Chandrasekaran, R., Arnott, S., and Dea, I., Carbohydr. Res., 1988, vol. 182, p. 1.

    Article  CAS  Google Scholar 

  37. 37.

    Pelletier, E., Viebke, C., Meadows, J., and Williams, P., Biomacromolecules, 2001, vol. 2, p. 946.

    Article  CAS  Google Scholar 

  38. 38.

    Izmailova, V.N. and Rehbinder, P.A., Strukturoobrazovanie v belkovykh sistemakh (Structurization in Protein Systems), Moscow: Nauka, 1974.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. P. Yampol’skaya.

Additional information

Original Russian Text © G.P. Yampol’skaya, A.A. Elenskii, N.V. Pan’kina, B.N. Tarasevich, V.G. Kulichikhin, 2009, published in Kolloidnyi Zhurnal, 2009, Vol. 71, No. 2, pp. 275–284.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yampol’skaya, G.P., Elenskii, A.A., Pan’kina, N.V. et al. Properties of carrageenan gels with immobilized lysozyme. Colloid J 71, 271 (2009). https://doi.org/10.1134/S1061933X09020185

Download citation

Keywords

  • Lysozyme
  • Loss Modulus
  • Colloid Journal
  • Sodium Chloride Solution
  • Gelation Point