Advertisement

Colloid Journal

, Volume 70, Issue 3, pp 356–365 | Cite as

Noncovalent columnar structures based on β-cyclodextrin

  • I. N. Topchieva
  • I. G. Panova
  • B. I. Kurganov
  • V. V. Spiridonov
  • E. V. Matukhina
  • S. K. Filippov
  • A. V. Lezov
Article

Abstract

A new method for the synthesis of associates of cyclodextrins (CDs) of the columnar type consisting of the precipitation of CDs from aqueous solutions into acetone at lowered temperatures is developed. It is shown that columnar structures exist in both a crystalline state and in aqueous solutions. Hydrodynamic radii and molecular masses of noncovalent columnar structures (NCSs) in aqueous solutions are determined by the dynamic and static light scattering methods. The degree of association of noncovalent columnar polymers is ∼40. It is revealed the NCS associates based on β-CD are stable and their hydrodynamic radius R h is equal to 100 ± 10 nm. The kinetics of interactions of initial β-CD and NCS with poly(propylene oxide) (PPO) is studied. The pattern of kinetic curves of R h growth upon interaction between NCS and PPO indicates that the aggregation of the particles of polymer inclusion complex proceeds in the regime of reaction-limited cluster-cluster aggregation. Kinetic curves describing the interaction processes between β-cyclodextrin and PPO are characterized by the presence of induction period t 0. At t > t 0, R ht 0.56 which is typical for the diffusion-limited cluster-cluster aggregation. Schemes of the formation of polymer inclusion complexes between initial β-CD or NCS and poly(propylene oxide) are proposed. Comparison of kinetic data on the complexation of β-CD in solution in the form of associates of two types with PPO demonstrates that columnar forms of associates are reactive species acting as macroreceptors.

Keywords

Inclusion Complex Macrocycle Colloid Journal Hydrodynamic Radius Columnar Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ballardini, R., Balzani, V., Credi, A., et al., Acc. Chem. Res., 2001, vol. 34, p. 445.CrossRefGoogle Scholar
  2. 2.
    Harada, A., Acc. Chem. Res., 2001, vol. 34, p. 456.CrossRefGoogle Scholar
  3. 3.
    Saenger, W., Jacob, J., Gessler, K., et al., Chem. Rev., 1998, vol. 98, p. 1787.CrossRefGoogle Scholar
  4. 4.
    Bikadi, Z., Kurdi, R., Balogh, S., et al., Chem. Biodiversity, 2006, vol. 3, p. 1266.CrossRefGoogle Scholar
  5. 5.
    Topchieva, I.N., Spiridonov, V.V., Kalashnikov, F.A., and Kurganov, B.I., Kolloidn. Zh., 2006, vol. 68, p. 105.Google Scholar
  6. 6.
    Topchieva, I.N., Spiridonov, V.V., Kataeva, N.A., et al., Colloid Polym. Sci., 2006, vol. 284, p. 795.CrossRefGoogle Scholar
  7. 7.
    Gonzalez-Gaitano, G., Rodriguez, P., Isasi, J.R., et al., J. Inclusion Phenom. Macrocycl. Chem., 2002, vol. 44, p. 101.CrossRefGoogle Scholar
  8. 8.
    Polarz, S., Smarsly, B., Bronstein, L., and Antonietti, M., Angew. Chem., Int. Engl. Ed., 2001, vol. 40, p. 4417.CrossRefGoogle Scholar
  9. 9.
    Han, B.-H. and Antonietti, M., Chem. Mater., 2002, vol. 14, p. 3477.CrossRefGoogle Scholar
  10. 10.
    Harada, A. and Kamachi, M., Macromolecules, 1993, vol. 26, p. 5698.CrossRefGoogle Scholar
  11. 11.
    Panova, I.G., Gerasimov, V.I., and Topchieva, I.N., Vysokomol. Soedin., Ser. A, 1998, vol. 40, p. 1681.Google Scholar
  12. 12.
    Topchieva, I.N., Tonelli, A.E., Panova, I.G., et al., Langmuir, 2004, vol. 20, p. 9036.CrossRefGoogle Scholar
  13. 13.
    Harada, A., Okada, M., Li, J., and Kamachi, M., Macromolecules, 1995, vol. 28, p. 8406.CrossRefGoogle Scholar
  14. 14.
    Popova, E.I., Topchieva, I.N., Zhavoronkova, E.V., et al., Vysokomol. Soedin., Ser. B, 2002, vol. 44, p. 72.Google Scholar
  15. 15.
    Panova, I.G., Gerasimov, V.I., Kalashnikov, F.A., and Topchieva, I.N., Vysokomol. Soedin., Ser. B, 1998, vol. 40, p. 2077.Google Scholar
  16. 16.
    Bonini, M., Rossi, S., Karlsson, G., et al., Langmuir, 2006, vol. 22, p. 1478.CrossRefGoogle Scholar
  17. 17.
    Coleman, A., Nicolis, I., Keller, N., and Dalbiez, J.P., J. Inclusion Phenom. Macrocycl. Chem., 1992, vol. 13, p. 139.CrossRefGoogle Scholar
  18. 18.
    Ceccato, M., Lo Nostro, P., and Baglioni, P., Langmuir, 1997, vol. 13, p. 2436.CrossRefGoogle Scholar
  19. 19.
    Lo Nostro, P., Lopes, J.R., and Cardelli, C.P., Langmuir, 2001, vol. 17, p. 4610.CrossRefGoogle Scholar
  20. 20.
    Becheri, A., Lo Nostro, P., Ninham, B.W., and Baglioni, P., J. Phys. Chem., B, 2003, vol. 107, p. 3979.CrossRefGoogle Scholar
  21. 21.
    Topchieva, I.N., Panova, I.G., Popova, E.I., et al., Vysokomol. Soedin., Ser. A, 2002, vol. 44, p. 588.Google Scholar
  22. 22.
    Rusa, C.C., Bullons, T.A., Fox, J., et al., Langmuir, 2002, vol. 18, p. 10016.CrossRefGoogle Scholar
  23. 23.
    Panova, I.G., Matuchina, E.V., and Topchieva, I.N., Polym. Bull. (Berlin), 2007, vol. 58, p. 737.CrossRefGoogle Scholar
  24. 24.
    Weitz, D.A., Huang, J.S., Lin, M.Y., and Sung, J., Phys. Rev. Lett., 1985, vol. 54, p. 1416.CrossRefGoogle Scholar
  25. 25.
    Khanova, H.A., Markossian, K.A., Kurganov, B.I., et al., Biochemistry, 2005, vol. 44, p. 15480.CrossRefGoogle Scholar
  26. 26.
    Markossian, K.A., Khanova, H.A., Kleimenov, S.Yu., et al., Biochemistry, 2006, vol. 45, p. 13375.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • I. N. Topchieva
    • 1
  • I. G. Panova
    • 1
  • B. I. Kurganov
    • 2
  • V. V. Spiridonov
    • 1
  • E. V. Matukhina
    • 3
  • S. K. Filippov
    • 4
  • A. V. Lezov
    • 4
  1. 1.Department of ChemistryLomonosov Moscow State UniversityVorobíevy gory, MoscowRussia
  2. 2.Bakh Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  3. 3.Moscow State Pedagogical UniversityMoscowRussia
  4. 4.Department of PhysicsSt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations