Advertisement

Colloid Journal

, 70:327 | Cite as

Master curves for elastic and plastic properties of highly concentrated emulsions

  • I. MasalovaEmail author
  • A. Ya. Malkin
Article

Abstract

Critical comparison of dependences of elastic and plastic properties of highly concentrated emulsions (so-called “compressed” emulsions) on the concentration and droplet sizes is performed. The studied emulsions of water-in-oil type are so-called “liquid explosives.” They are characterized by different mean sizes and different droplet size distributions of the dispersed phase. Different average values (D av, D 32, and D 43) are used as characteristics of droplet sizes. Experiments are carried out with emulsions of two concentrations. Aqueous phase (dispersed droplets) is presented by supercooled solutions of inorganic salt in water in a metastable state. The concentration limit of the existence of highly concentrated emulsions is determined by the condition of the closest packing of liquid droplets, which lies in the φ* = 0.77–0.80 range. In addition, there is a limiting value of the maximal size of droplets. This limiting value depends on the concentration and meets the requirement that droplets should be small enough for the solution to exist in a supercooled state. The elastic modulus and the yield stress of emulsions studied are proportional to the square of the reciprocal linear size of droplets, which contradicts some theoretical models, according to which these parameter should be proportional to the reciprocal size of droplets. Using the obtained experimental data, we constructed generalized dependences of the elastic modulus and the yield stress on the concentration and size of droplets. These characteristics are in good agreement with the experimental data.

Keywords

Elastic Modulus Droplet Size Colloid Interface Colloid Journal Master Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bampfield, H.A. and Cooper, J., in Encyclopedia of Emulsion Technology, New York-Basel: Marcel Dekker, 1985, vol. 7, p. 281.Google Scholar
  2. 2.
    Mason, T.G., Bibette, J., and Weitz, D.A., Phys. Rev. Lett., 1995, vol. 75, p. 2051.CrossRefGoogle Scholar
  3. 3.
    Masalova, I. and Malkin, A.Ya., Kolloidn. Zh., 2007, vol. 69, p. 207.Google Scholar
  4. 4.
    Jager-Lezer, N., Tranchant, J.F., Alard, C.V., et al., Rheol. Acta, 1998, vol. 37, p. 129.CrossRefGoogle Scholar
  5. 5.
    Langenfeld, A., Schmitt, V., and Stébé, M.J., J. Colloid Interface Sci., 1999, vol. 218, p. 522.CrossRefGoogle Scholar
  6. 6.
    Rocca, S. and Stébé, M.-J., J. Phys. Chem., B, 2000, vol. 104, p. 10490.CrossRefGoogle Scholar
  7. 7.
    Ponton, A., Clément, P., and Grossiord, J.L., J. Rheol. (N.Y.), 2001, vol. 45, p. 521.Google Scholar
  8. 8.
    Babak, V.G., Lengfield, A., Fa, N., and Stébé, M.J., Prog. Colloid Polym. Sci., 2001, vol. 118, p. 216.CrossRefGoogle Scholar
  9. 9.
    Pons, R., Erra, P., Solans, C., et al., J. Phys. Chem., 1992, vol. 97, p. 12320.CrossRefGoogle Scholar
  10. 10.
    Pons, R., Solans, C., and Tadros, Th.F., Langmuir, 1995, vol. 11, p. 1996.CrossRefGoogle Scholar
  11. 11.
    Mason, T.G., Bibette, J., and Weitz, D.A., J. Colloid Interface Sci., 1996, vol. 179, p. 439.CrossRefGoogle Scholar
  12. 12.
    Derkach, S.R., Levachev, S.R., Kukushkina, A.N., et al., Kolloidn. Zh., 2007, vol. 69, p. 170.Google Scholar
  13. 13.
    Malkin, A.Ya., Masalova, I., Slatter, P., and Wilson, K., Rheol. Acta, 2004, vol. 43, p. 584.CrossRefGoogle Scholar
  14. 14.
    Masalova, I., Taylor, M., Kharatiyan, E., and Malkin, A.Ya., J. Rheol. (N.Y.), 2005, vol. 49, p. 839.Google Scholar
  15. 15.
    Malkin, A.Ya. and Masalova, I., in Advances in Rheology and Its Applications, Ed. by Luo, Y., Rao, Q., and Xu, Y., New York: Science, 2005, p. 5.Google Scholar
  16. 16.
    Masalova, I., Malkin, A.Ya., Ferg, E., et al., J. Rheol., 2006, vol. 50, p. 435.CrossRefGoogle Scholar
  17. 17.
    Masalova, I. and Malkin, A.Ya., Kolloidn. Zh., 2007, vol. 69, p. 220.Google Scholar
  18. 18.
    Taylor, G.I., Proc. R. Soc. London, A, 1932, vol. 138, p. 41.CrossRefGoogle Scholar
  19. 19.
    Pal, R., J. Rheol., 2001, vol. 45, p. 509.CrossRefGoogle Scholar
  20. 20.
    Pal, R., J. Colloid Interface Sci., 2003, vol. 263, p. 296.CrossRefGoogle Scholar
  21. 21.
    Princen, H.M., J. Colloid Interface Sci., 1983, vol. 91, p. 160.CrossRefGoogle Scholar
  22. 22.
    Princen, H.M., J. Colloid Interface Sci., 1985, vol. 105, p. 150.CrossRefGoogle Scholar
  23. 23.
    Princen, H.M. and Kiss, A.D., J. Colloid Interface Sci., 1986, vol. 112, p. 427.CrossRefGoogle Scholar
  24. 24.
    Princen, H.M., J. Colloid Interface Sci., 1989, vol. 128, p. 176.CrossRefGoogle Scholar
  25. 25.
    Lacasse, M.-D., Grest, G.S., Levine, D., et al., Phys. Rev. Lett., 1996, vol. 76, p. 3448.CrossRefGoogle Scholar
  26. 26.
    Masalova, I. and Malkin, A.Ya., Appl. Rheol., 2007, vol. 17, p. 42250.Google Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  1. 1.Faculty of Engineering, Department of Civil EngineeringCape Peninsula University of TechnologyCape TownRepublic of South Africa
  2. 2.MoscowRussia

Personalised recommendations