Colloid Journal

, Volume 70, Issue 3, pp 303–310 | Cite as

The effect of temperature on the development of nanosized nucleus iron-oxygen structures in Fe0-H2O-O2 Systems

  • E. N. Lavrinenko
  • V. A. Prokopenko
  • N. I. Lebovka
  • S. V. Mamunya


The formation of nucleus iron-oxygen structures in Fe0-H2O-O2 systems has been investigated. It has been shown that temperature affects the rate of iron(II) oxidation and, accordingly, the composition of components involved in phase formation. At 10°C, only nucleus structures of protolepidocrocites are formed on the surface; at 20–40°C, structures of protolepidocrocites and ferrihydrite; and at 50–70°C, structures of magnetite and FeO. The analysis of thermodynamic functions has revealed the most probable formation reactions of nucleus iron-oxygen structures and the optimal conditions for the structure formation in morphological series.


Magnetite Dispersion Medium Goethite Thermodynamic Function Maghemite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Prokopenko, V.A., Lavrinenko, E.N., and Pertsov, N.V., Kolloidn. Zh., 2001, vol. 63, p. 505.Google Scholar
  2. 2.
    Prokopenko, V.A., Lavrinenko, E.N., and Mamunya, S.V., in Nanosistemy, nanomaterialy, nanotekhnologii (Nanosystems, Nanomaterials, Nanotechnologies), 2005, vol. 3, p. 511.Google Scholar
  3. 3.
    Prokopenko, V.A., Lavrinenko, E.N., and Mamunya, S.V., Kolloidn. Zh., 2006, vol. 68, p. 821.Google Scholar
  4. 4.
    Bond, D.C. and Bernard, G.G., Ind. Eng. Chem., 1952, vol. 44, no. 10.Google Scholar
  5. 5.
    Stumm, W. and Lee, G.F., Ind. Eng. Chem., 1961, vol. 53, no. 2.Google Scholar
  6. 6.
    Dankov, P.D., Ignatov, D.V., and Shishakov, N.A., Elektronograficheskie issledovaniya okisnykh i gidrookisnykh plenok na metallakh (Electronographic Investigation of Oxide and Hydroxide Films on Metals), Moscow: Akad. Nauk SSSR, 1953.Google Scholar
  7. 7.
    Prokopenko, V.A., Lavrinenko, E.N., Mamunya, S.V., and Budankova, S.N., Nanostrukt. Materialoved., 2007, no. 3, p. 32.Google Scholar
  8. 8.
    Gipergennye okisly zheleza v geologicheskikh protsessakh (Supergene Iron Oxides in Geological Processes), Petrovskaya, N.V., Ed., Moscow: Nauka, 1975.Google Scholar
  9. 9.
    Misawa, T., Hashimoto, K., and Shimodaira, S., Corros. Sci., 1974, vol. 14, p. 131.CrossRefGoogle Scholar
  10. 10.
    Mel’nik, Yu.P., Termodinamicheskie konstanty dlya analiza uslovii obrazovaniya zheleznykh rud. Spravochnik (Thermodynamic Constants for Analyzing Conditions of Iron Ores Formation: A Handbook), Kiev: Naukova Dumka, 1972.Google Scholar
  11. 11.
    Naumov, G.B., Ryzhenko, B.N., and Khodakovskii, I.L., Spravochnik termodinamicheskikh velichin (dlya geologov) (Handbook of Thermodynamic Constants for Geologists), Moscow: Atomizdat, 1971.Google Scholar
  12. 12.
    Bulakh, A.G., Metody termodinamiki v mineralogii (Thermodynamics Methods in Mineralogy), Leningrad: Nedra, 1974.Google Scholar
  13. 13.
    Karapetyants, M.Kh., Khimicheskaya termodinamika (Chemical Thermodynamics), Moscow: Khimiya, 1975.Google Scholar
  14. 14.
    Towe, K.M., Bradley, W. F, J. Colloid Interface Sci., 1967, vol. 24, p. 383.CrossRefGoogle Scholar

Copyright information

© MAIK Nauka 2008

Authors and Affiliations

  • E. N. Lavrinenko
    • 1
  • V. A. Prokopenko
    • 1
  • N. I. Lebovka
    • 1
  • S. V. Mamunya
    • 1
  1. 1.Ovcharenko Institute of Biocolloid ChemistryNational Academy of Sciences of UkraineKievUkraine

Personalised recommendations