Skip to main content
Log in

Foam and wetting films from amphiphilic block copolymers: Isoelectric state and stability

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Foam and wetting films from PEO-PPO-PEO triblock copolymers Synperonic P85 and F108 are studied under the identical conditions, using microinterference method. The range of background electrolyte concentration, where DLVO (electrostatic and van der Waals) forces and non-DLVO (steric) forces act in the films, is determined. From the dependence of the film thickness on pH, it is unambiguously shown that electrostatic interactions (i.e., the potential and surface charge) in the foam and wetting films caused by the presence of nonionic polymer surfactants arise due to the preferential adsorption of OH ions at the solution-air interface. The films obtained below the critical pH values are sterically stabilized; i.e., a decrease in pH induces a transition from electrostatic to steric stabilization. Three-layer models are designed for both types of films that allow to calculate electrostatic disjoining pressure Πel. The values of ϕ0 potential of the foam film are used to calculate Πel in wetting films. A relation between the isoelectric state of foam and wetting films and their stability is found to exist in the range of pH corresponding to electrostatic stabilization. Metastable films, film rupture, or the transition to sterically stabilized films were also found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scheludko, A., Adv. Colloid Interface Sci., 1967, vol. 1, p. 391.

    Google Scholar 

  2. Derjaguin, B. V. and Churaev, N. V., Smachivayushchie Plenki (Wetting Films), Moscow: Nauka, 1984.

    Google Scholar 

  3. Derjaguin, B. V., Theory of Stability of Colloids and Thin Films, New York: Consultants Bureau, 1989.

    Google Scholar 

  4. Derjaguin, B. V., Churaev, N. V., and Muller V. M., Surface Forces, New York: Consultants Bureau, 1987.

    Google Scholar 

  5. Israelashvili, J. N., Intermolecular and Surface Forces, London: Academic Press, 1985.

    Google Scholar 

  6. De Frejter, J., in Thin Liquid Films, Ivanov, I.B., Ed., New York: Marcel Dekker, 1988, p. 1.

    Google Scholar 

  7. Churaev, N. V. and Zorin, Z. M., Adv. Colloid Interface Sci., 1992, vol. 40, p. 109.

    Article  CAS  Google Scholar 

  8. Exerowa, D. and Kruglyakov, P. M., Foam and Foam Films, Amsterdam: Elsevier, 1998.

    Google Scholar 

  9. Exerowa, D., Adv. Colloid Interface Sci., 2002, vol. 96, p. 75.

    Article  CAS  Google Scholar 

  10. Alexandridis, P. and Hatton, T. A., Colloids Surf. A, 1995, vol. 96, p. 1.

    Article  CAS  Google Scholar 

  11. Nonionic Surfactants: Polyoxyalkylene Block Copolymers, Nace, V.M., Ed., New York: Marcel Dekker, 1966.

    Google Scholar 

  12. Amphiphilic Block Copolymers: Self-Assembly and Applications, Alexandridis, P. and Lindman, B., Eds., Amsterdam: Elsevier, 1997.

    Google Scholar 

  13. Sedev, R., Kolarov, T., and Exerowa, D., Colloid Polymer Sci., 1995, vol. 273, p. 906.

    Article  CAS  Google Scholar 

  14. Sedev, R., Ivanova, R., Kolarov, T., and Exerowa, D., J. Disp. Sci. Technol., 1997, vol. 18, p. 751.

    CAS  Google Scholar 

  15. Exerowa, D., Sedev, R., Ivanova, R., Kolarov, T., and Tadros, Th. F., Colloids Surf. A, 1997, vol. 123, p. 277.

    Article  Google Scholar 

  16. Exerowa, D., Ivanova, R., and Sedev, R., Prog. Colloid Polymer Sci., 1998, vol. 109, p. 29.

    CAS  Google Scholar 

  17. Sedev, R. and Exerowa, D., Adv. Colloid Interface Sci., 1999, vol. 83, p. 111.

    Article  CAS  Google Scholar 

  18. Diakova, B., Kaisheva, M., and Platikanov, D., Colloids Surf. A, 2001, vol. 190, p. 61.

    Article  CAS  Google Scholar 

  19. Diakova, B., Platikanov, D., Atanassov, R., and Kaisheva, M., Adv. Colloid Interface Sci., 2003, vol. 104, p. 25.

    Article  CAS  Google Scholar 

  20. Scheludko, A. and Exerowa, D., Comm. Dept. Chem. Bulg. Acad. Sci., 1959, vol. 7, p. 123.

    Google Scholar 

  21. Kolarov, T. and Iliev, L., Ann. Univ. Sofia Fac. Chim., 1974, vol. 69, p. 107.

    Google Scholar 

  22. Exerowa, D., Zacharieva, M., Cohen, R., and Platikanov, D., Colloid Polymer Sci., 1979, vol. 257, p. 1089.

    Google Scholar 

  23. Exerowa, D., Kolarov, T., and Khristov, Khr., Colloids Surf., 1987, vol. 22, p. 171.

    Article  Google Scholar 

  24. Kolarov, T., Cohen, R., and Exerowa, D., Colloids Surf., 1989, vol. 42, p. 49.

    Article  CAS  Google Scholar 

  25. Zorin, Z., Platikanov, D., and Kolarov, T., Colloids Surf., 1987, vol. 22, p. 147.

    Article  CAS  Google Scholar 

  26. Donners, W. A. B., Rijnbout, J. B., and Vrij, A., J. Colloid Interface Sci., 1977, vol. 60, p. 540.

    Article  CAS  Google Scholar 

  27. Sergeeva, I. P., Sobolev, V. D., and Churaev, N. V., Colloid J., 1990, vol. 52, p. 1129.

    CAS  Google Scholar 

  28. Malmsten, M., Linse, P., and Cosgrove, T., Macromolecules, 1992, vol. 25, p. 2474.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Exerowa, D., Churaev, N.V., Kolarov, T. et al. Foam and wetting films from amphiphilic block copolymers: Isoelectric state and stability. Colloid J 68, 155–161 (2006). https://doi.org/10.1134/S1061933X06020062

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X06020062

Keywords

Navigation