Skip to main content
Log in

Geometry of Inhomogeneous Poisson Brackets, Multicomponent Harry Dym Hierarchies, and Multicomponent Hunter–Saxton Equations

  • Research Articles
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

We introduce a natural class of multicomponent local Poisson structures \(\mathcal P_k + \mathcal P_1\), where \(\mathcal P_1\) is a local Poisson bracket of order one and \(\mathcal P_k\) is a homogeneous Poisson bracket of odd order \(k\) under the assumption that \(\mathcal P_k\) has Darboux coordinates (Darboux–Poisson bracket) and is nondegenerate. For such brackets, we obtain general formulas in arbitrary coordinates, find normal forms (related to Frobenius triples), and provide the description of the Casimirs, using a purely algebraic procedure. In the two-component case, we completely classify such brackets up to a point transformation. From the description of Casimirs, we derive new Harry Dym (HD) hierarchies and new Hunter–Saxton (HS) equations for arbitrary number of components. In the two-component case, our HS equation differs from the well-known HS2 equation.

DOI 10.1134/S1061920822040100

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Fontanelli, P. Lorenzoni, M. Pedroni, and J. Zubelli, “Bi-Hamiltonian Aspects of a Matrix Harry Dym Hierarchy”, J. Math. Phys., 49 (2008), 092901.

    Article  ADS  MATH  Google Scholar 

  2. M. Pedroni, V. Sciacca, and J. Zubelli, “The Bi-Hamiltonian Theory of the Harry Dym Equation”, Theoret. Math. Phys., 133 (2002), 1585–1597.

    Article  Google Scholar 

  3. A. Bolsinov, A. Yu. Konyaev, and V. Matveev, “Applications of Nijenhuis Geometry III: Frobenius Pencils and Compatible Non-Homogeneous Poisson Structures”, preprint,.

    Google Scholar 

  4. M. Kruskal, Nonlinear Wave Equations, Dynamical Systems, Theory and Applications, Springer-Verb, Berlin, 1975.

    Book  Google Scholar 

  5. P. C. Sabatier, “On Some Spectral Problems and Isospectral Evolutions Connected with the Classical String Problem. I, II”, Lett. Nuovo Cimento, 26 (1979), 477–486.

    Article  MATH  Google Scholar 

  6. P. W. Doyle, “Differential Geometric Poisson Bivectors in One Space Variable”, J. Math. Phys., 34 (1993).

    Article  Google Scholar 

  7. B. Dubrovin and S. Novikov, “Hamiltonian Formalism of One-Dimensional Systems of Hydrodynamic Type, and the Bogolyubov-Whitman Averaging Method”, Dokl. Akad. Nauk SSSR, 270:4 (1983), 781–785.

    ADS  MATH  Google Scholar 

  8. B. Dubrovin and S. Novikov, “Hydrodynamics of Weakly Deformed Soliton Lattices. Differential Geometry and Hamiltonian Theory”, Uspekhi Mat. Nauk, 44:6 (270) (1989), 29–98.

    MATH  Google Scholar 

  9. O. Mokhov, “Pencils of Compatible Metrics and Integrable Systems”, Russ. Math. Surv., 72:5 (2017), 889–93.

    Article  MATH  Google Scholar 

  10. L. Landau, “Theory of the Superfluidity of Helium II”, Phys. Rev., 60 (1941).

    Article  MATH  Google Scholar 

  11. G. Potemin, “On Third-Order Poisson Brackets of Differential Geometry”, Russ. Math. Surv., 52:3 (1997), 617–618.

    Article  MATH  Google Scholar 

  12. A. V. Balandin and G. V. Potemin, “On Non-Degenerate Differential-Geometric Poisson Brackets of Third Order”, Russ. Math. Surv., 56:5 (2001), 976–977.

    Article  MATH  Google Scholar 

  13. E. V. Ferapontov, M. V. Pavlov, and R. F. Vitolo, “Towards the Classification of Homogeneous Third-Order Hamiltonian Operators”, Internat. Math. Res. Notices, 2016:22 , 6829–6855.

    MATH  Google Scholar 

  14. O. Mokhov, “Symplectic and Poisson Geometry on Loop Spaces of Smooth Manifolds and Integrable Equations”, Rev. Math. Math. Phys., (2008).

    Google Scholar 

  15. I. Gelfand and I. Dorfman, “Hamiltonian Operators and Algebraic Structures Related to Them”, Funct. Anal. Appl., 13:4 (1979), 248–262.

    Article  Google Scholar 

  16. P. Olver, Applications of Lie Groups to Differential Equations, Springer-Verlag, New York, 1993.

    Book  MATH  Google Scholar 

  17. James T. Ferguson, “Flat Pencils of Symplectic Connections and Hamiltonian Operators of Degree 2”, J. Geom. Phys., 58:4 , 468–486.

    Article  MATH  Google Scholar 

  18. I. Gelfand, V. Retakh, and M. Shubin, “Fedosov Manifolds”, Adv. Math., 136:1 (1998), 104–140.

    Article  MATH  Google Scholar 

  19. P. Lancaster and L. Rodman, “Canonical Forms for Hermitian Matrix Pairs Under Strict Equivalence and Congruence”, SIAM Review, 47 (2005), 407–443.

    Article  ADS  MATH  Google Scholar 

  20. I. Kaygorodov, I. Rakhimov and Sh. K. Said Husain, “The Algebraic Classification of Nilpotent Associative Commutative Algebras”, J. Algebra Appl., 19:11 (2020), 2050220, 14 pp.

    Article  MATH  Google Scholar 

  21. A. Balinskii and S. Novikov, “Poisson Brackets of Hydrodynamic Type, Frobenius Algebras and Lie Algebras”, Dokl. Akad. Nauk SSSR, 283:5 (1985), 1036–1039.

    MATH  Google Scholar 

  22. I. A. B. Strachan and B. M. Szablikowski, “Novikov Algebras and a Classification of Multicomponent Camassa–Holm Equations”, Stud. Appl. Math., 133:1 (2014), 84–117.

    Article  MATH  Google Scholar 

  23. M. Antonowicz and A. Fordy, “Coupled Harry Dym Equations with Multi-Hamiltonian Structures”, J. Phys. A, 21:5 (1988), L269–L275.

    Article  ADS  MATH  Google Scholar 

  24. B. Dubrovin, “Flat Pencils of Metrics and Frobenius Manifolds”, Integrable Systems and Algebraic Geometry (Kobe–Kyoto, 1997), World Sci. Publ., River Edge, NJ, 1998, 47–72.

    Google Scholar 

  25. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1972.

    Book  MATH  Google Scholar 

  26. Senyue Lou, Bao-Feng Feng, and Ruoxia Yao, “Multi-Soliton Solution to the Two-Component Hunter–Saxton Equation”, Wave Motion, 65 (2016), 17–28.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Konyaev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konyaev, A.Y. Geometry of Inhomogeneous Poisson Brackets, Multicomponent Harry Dym Hierarchies, and Multicomponent Hunter–Saxton Equations. Russ. J. Math. Phys. 29, 518–541 (2022). https://doi.org/10.1134/S1061920822040100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920822040100

Navigation