J. Bell, R. Miles, and Th. Ward, “Towards a Pólya-Carlson Dichotomy for Algebraic Dynamics”, Indag. Math. (N.S.), 25:4 (2014), 652–668.
MathSciNet
Article
Google Scholar
Jakub Byszewski and Gunther Cornelissen, “Dynamics on Abelian Varieties in Positive Characteristic”, Algebra Number Theory, 12:9 (2018), 2185–2235.
MathSciNet
Article
Google Scholar
A. Fel’shtyn, E. Troitsky, and M. Zietek, “New Zeta Functions of Reidemeister Type and the Twisted Burnside-Frobenius Theory”, Russ. J. Math. Phys., 27:2 (2020), 199–211.
MathSciNet
Article
Google Scholar
A. Fel’shtyn, “Dynamical Zeta Functions, Nielsen Theory and Reidemeister Torsion”, Mem. Amer. Math. Soc., 147:699 (2000).
MathSciNet
Article
Google Scholar
A. Fel’shtyn and R. Hill, “The Reidemeister Zeta Function with Applications to Nielsen Theory and a Connection with Reidemeister Torsion”, K-Theory, 8:4 (1994), 367–393.
MathSciNet
Article
Google Scholar
A. Fel’shtyn and B. Klopsch, “Pólya–Carlson Dichotomy for Coincidence Reidemeister Zeta Functions via Profinite Completions”, arXiv:2102.10900, (2021).
ADS
Google Scholar
A. Fel’shtyn and E. Troitsky, “Twisted Burnside-Frobenius Theory for Discrete Groups”, J. Reine Angew. Math., 613 (2007), 193–210.
MathSciNet
MATH
Google Scholar
A. Fel’shtyn and E. Troitsky, “Twisted Burnside-Frobenius Theory for Endomorphisms of Polycyclic Groups”, Russian J. Math. Phys., 25:1 (2018), 17–26.
ADS
MathSciNet
Article
Google Scholar
A. Fel’shtyn, E. Troitsky, and A. Vershik, “Twisted Burnside Theorem for Type II\({}_1\) Groups: an Example”, Math. Res. Lett., 13:5 (2006), 719–728.
MathSciNet
Article
Google Scholar
D. Gonçalves, “The Coincidence Reidemeister Classes on Nilmanifolds and Nilpotent Fibrations”, Topology Appl., 83 (1998), 169–186.
MathSciNet
Article
Google Scholar
D. Gonçalves and P. Wong, “Twisted Conjugacy Classes in Nilpotent Groups”, J. Reine Angew. Math., 633 (2009), 11–27.
MathSciNet
MATH
Google Scholar
N. Koblitz, p-Adic Numbers, p-Adic Analysis, and Zeta-Functions, vol. 58, Grad. Texts in Math., second edition, Springer-Verlag, New York, 1984.
Book
Google Scholar
A. Lubotzky and D. Segal, Subgroup Growth, vol. 212, Birkhäuser Verlag, Basel, 2003.
Book
Google Scholar
Derek J. S. Robinson, A Course in the Theory of Groups, vol. 80, Springer-Verlag, New York, 1996.
Book
Google Scholar
Sanford L. Segal, Nine Introductions in Complex Analysis, vol. 208, Elsevier Science B.V., Amsterdam, revised edition, 2008.
MATH
Google Scholar
A. Weil, Basic Number Theory, Grundlehren Math. Wiss., Band 144, Springer-Verlag New York, Inc., New York, 1967.
Book
Google Scholar