Skip to main content
Log in

Magneto-dimensional resonance. Pseudospin phase and hidden quantum number

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

The Schrödinger operator for a spinless charge inside a layer with parabolic confinement profile and homogeneous magnetic field is considered. The Lorentz (cyclotron) and the confinement frequencies are assumed to be equal to each other. After inclination of the layer normal from the magnetic field direction there appears a pseudospin su(2)-field removing the resonance degeneracy of Landau levels. Under deviations of the layer surface from the plane shape, a longitudinal geometric current is created. In circulations around surface warping, there is a nontrivial quantum phase transition generated by an element of the π1-homotopy group and a hidden degree of freedom (spectral degeneracy) associated with a “charge” of geometric poles on the layer. The quantization rule contains an additional parity index related to the algebraic number of geometric poles and the Landau level number. The resonance pseudospin phase-shift represents an example of general Aharonov–Bohm type topologic phenomena in quantum (semiclassical or adiabatic) systems with delta-function singularities in symplectic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Maraner, “Landau Ground State on Riemannian Surfaces,” Mod. Phys. Lett. 7, 2555–2558 (1992).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. R. Iengo and D. Li, “Quantum Mechanics and Quantum Hall Effect on Riemann Surfaces,” Nucl. Phys. B 413, 735–753 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. P. Maraner, “A Complete Perturbative Expansion for Quantum Mechanics with Constraints,” J. Phys. A: Math. Gen. 28 (10), 2939 (1995).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. P. Schuster and R. Jaffe, “Quantum Mechanics on Manifolds Embedded in Euclidean Space,” Ann. Phys. 307 (1), 132–143 (2003).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. P. Gosselin, H. Boumrar, and H. Mohrbach, “Semiclassical Quantization of Electrons in Magnetic Fields: the Generalized Peierls Substitution,” Europhysics Letters (EPL) 84, 50002 (2008).

    Article  ADS  Google Scholar 

  6. G. Ferrari and G. Cuoght, “Schrödinger Equation for a Particle on a Curved Surface in an Electric and Magnetic Field,” Phys. Rev. Lett. 100, 230403 (2008).

    Article  ADS  Google Scholar 

  7. M. V. Karasev, “Magneto-Metric Hamiltonians on Quantum Surfaces in the Configuration Space,” Russ. J. Math. Phys. 14 (1), 57–65 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. M. V. Karasev, “Internal Geometric Current and the Maxwell Equation as a Hamiltonian System on Configuration Surfaces,” Russ. J. Math. Phys. 14 (2), 134–141 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. M. V. Karasev, “Quantum Geometry of Nano-Space,” Russ. J. Math. Phys. 15 (3), 417–420 (2008).

    Google Scholar 

  10. M. V. Karasev, “Graphene as a Quantum Surface with Curvature-Strain Preserving Dynamics,” Russ. J. Math. Phys. 18 (1), 25–32 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. M. V. Karasev, “Hall quantum Hamiltonians and electric curvature,” Russ. J. Math. Phys. 19 (3), 299–306 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. V. Caplik and R. H. Blick, “On Geometric Potentials in Quantum-Electromechanical Circuits,” New J. Phys. 6 (1), 33 (2004).

    Article  ADS  Google Scholar 

  13. Y. V. Pershin and C. Piermarocchi, “Persistent and Radiation-Induced Currents in Distorted Quantum Rings,” Phys. Rev. B 72, 125348 (2005).

    Article  ADS  Google Scholar 

  14. M. Szelag and M. Szopa, “Persistent Currents in Distorted Quantum Rings,” J. Phys. Conf. Ser. 104 (1), 012006 (2008).

    Article  Google Scholar 

  15. H. Taira and H. Shima, “Torsion-Induced Persistent Current in a Twisted Quantum Ring,” J. Phys. Condensed Matter 22 (7), 075301 (2010).

    Article  ADS  Google Scholar 

  16. M. V. Karasev and V. P. Maslov, Nonlinear Poisson Brackets. Geometry and Quantization (Nauka, Moscow, 1991; Amer. Math. Soc., Providence, 1993).

    MATH  Google Scholar 

  17. B. Simon, “Holonomy, the Quantum Adiabatic Theorem and Berry’s Phase,” Phys. Rev. Lett. 5 (1), 2167–2170, 1983.

    Article  ADS  MathSciNet  Google Scholar 

  18. M. V. Berry, “Quantal Phase Factors Accompanying Adiabatic Changes,” Proc. R. Soc. London Ser. A 392, 45–57 (1984).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Geometric Phases in Physics, Ed. by F. Wilczek and A. Shapere (World Scientific, Singapore, 1989).

  20. P. Gosselin, A. Bérard, and H. Mohrbach, “Semiclassical Diagonalization of Quantum Hamiltonian and Equations of Motion with Berry Phase Corrections,” Eur. Phys. Jour. B 58, 137 (2007).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. P. Gosselin, J. Hanssen, and H. Mohrbach, “Recursive Diagonalization of Quantum Hamiltonians to All Orders in h,” Phys. Rev. D 77, 085008 (2008).

    Article  ADS  Google Scholar 

  22. M. V. Karasev, “New Global Asymptotics and Anomalies in the Problem of Quantization of the Adiabatic Invariant,” Funktsional. Anal. i Prilozhen 24 (2), 24–36 (1990) [Functional Anal. Appl. 24, 104–114 (1990)].

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Karasev, “Quantization and Coherent States over Lagrangian Submanifolds,” Russ. J. Math. Phys. 3, 393–400 (1985).

    MathSciNet  MATH  Google Scholar 

  24. Y. Aharonov and A. Casher, “Ground State of a Spin-1/2 Charged Particle in a Two-Dimensional Magnetic Field,” Phys. Rev. 19 (6), 2461–2462 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  25. Y. Aharonov and A. Casher, “Topological quantum effects for neutral particles,” Phys. Rev. Lett. 53 (4), 319–321(1984).

    Article  ADS  MathSciNet  Google Scholar 

  26. P. Maraner and C. Destri, “Geometry-Induced Yang–Mills Fields in Constrained Quantum Mechanics,” Mod. Phys. Lett. A08 (9), 861–868 (1993).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. P. Maraner, “Monopole Gauge Field and Quantum Potentials Induced by the Geometry in Simple Dynamical Systems,” Ann. Phys. 246 (2), 325–346 (1996).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. L. Magarill, D. Romanov, and A. Chaplik, “Electron Energy Spectrum and the Persistent Current in an Elliptical Quantum Ring,” JETP 83 (2), 361 (1996).

    ADS  Google Scholar 

  29. A. Bruno-Alfonso and A. Latge, “The Aharonov–Bohm Oscillations in a Quantum Ring: Eccentricity and Electric-Field Effects,” Phys. Rev. B 71, 125312 (2005).

    Article  ADS  Google Scholar 

  30. E. H. Semiromi, “The Aharonov–Bohm Oscillations and the Energy Spectrum in Two-Dimensional Elliptical Quantum Ring Nanotstructures,” Phys Ser. 85 (3), 035706 (2012).

    Article  ADS  MATH  Google Scholar 

  31. N. S. Manton and P. M. Sutcliffe, “Topological Solitons,” Cambridge University Press (2004).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Karasev.

Additional information

This work was supported by the Program of Basic Research of HSE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karasev, M.V. Magneto-dimensional resonance. Pseudospin phase and hidden quantum number. Russ. J. Math. Phys. 24, 326–335 (2017). https://doi.org/10.1134/S1061920817030062

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920817030062

Navigation