Skip to main content
Log in

Mathematical quantum Yang–Mills theory revisited

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

A mathematically rigorous relativistic quantum Yang–Mills theory with an arbitrary semisimple compact gauge Lie group is set up in the Hamiltonian canonical formalism. The theory is nonperturbative, without cut-offs, and agrees with the causality and stability principles. This paper presents a fully revised, simplified, and corrected version of the corresponding material in the previous papers Dynin ([11] and [12]). The principal result is established anew: due to the quartic self-interaction term in the Yang–Mills Lagrangian along with the semisimplicity of the gauge group, the quantum Yang–Mills energy spectrum has a positive mass gap. Furthermore, the quantum Yang–Mills Hamiltonian has a countable orthogonal eigenbasis in a Fock space, so that the quantum Yang–Mills spectrum is point and countable. In addition, a fine structure of the spectrum is elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Quantum Yang–Mills Theory (http://www.claymath.org/prizeproblems/index.html).

  2. C. S. Agarwal and E. Wolf, “Calculus for Functions of Noncommuting Operators and General Phase-Space Methods in Quantum Mechanics,” Phys. Rev. D 2, 2161–2225 (1970).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. M. S. Agranovich, Elliptic Boundary Problems (Partial differential operators, IX Encyclopaedia of Mathematical Sciences, Springer, 1997).

    Book  MATH  Google Scholar 

  4. V. Arnold et al. (editors), Mathematics: Frontiers and Perspectives (American Mathematical Society, Providence, 2000).

    MATH  Google Scholar 

  5. F. Berezin, The Method of Second Quantization (Nauka, Moscow, 1965; Academic Press, 1966).

    MATH  Google Scholar 

  6. F. A. Berezin, “Wick and Anti-Wick Symbols of Operators,” Math. USSR Sb. 15, 577–606 (1971); Math. USSR-Sbornik 86 (128), 577–606 (1971).

    Article  MATH  Google Scholar 

  7. F. A. Berezin, “Covariant and Contravariant Symbols of Operators,” Izv. Akad. Nauk USSR 36, 1134–1167 (1972); Math. SSSR-Izvestiya 6, 1117–1151 (1972).

    MathSciNet  Google Scholar 

  8. F. A. Berezin and M. A. Shubin, The Schrödinger Equation (Kluwer Academic Publishers, 1991).

    Book  MATH  Google Scholar 

  9. P. J. Boland, “Holomorphic Functions on Nuclear Spaces,” Trans. Amer. Math. Soc. 209, 275–280 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Colombeau, “Differential Calculus and Holomorphy,” North-Holland Math. Stud. 84 (North-Holland Publishing Co., Amsterdam–New York, 1982).

    MATH  Google Scholar 

  11. A. Dynin, “Quantum Yang–Mills-Weyl Dynamics in the Schroedinger Paradigm,” Russ. J. Math. Phys. 21 (2), 169–188 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Dynin, “On the Yang–Mills Quantum Mass Gap Problem,” Russ. J. Math. Phys. 21 (2), 326–328 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Dell’Antonio and D. Zwanziger, “Every Gauge Orbit Passes inside the Gribov Horizon,” Comm. Math. Phys. 138, 259–299 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  14. L. Faddeev and A. Slavnov, Gauge Fields, Introduction to Quantum Theory (Addison-Wesley, 1991).

    MATH  Google Scholar 

  15. G. Folland, Harmonic Analysis in Phase Space (Princeton University Press, 1989).

    MATH  Google Scholar 

  16. I. M. Gelfand and R. A. Minlos, “Solution of Quantum Field Equations,” I. M. Gelfand, Collected Papers 1, 462–465 (1987) (Springer).

    Google Scholar 

  17. I. Gelfand and N. Vilenkin, Generalized Functions (4, Academic Press, 1964).

    Google Scholar 

  18. R. T. Glassey and W. A. Strauss, “Decay of Classical Yang–Mills Fields,” Comm. Math. Phys. 65 (1), 1–13 (1979).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. J. Glimm and A. Jaffe, “An Infinite Renormalization of the Hamiltonian is Necessary,” J. Math. Phys. 10, 2213–2214 (1969).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. J. Glimm and A. Jaffe, Quantum Physics: A Functional Point of View (Springer, 1987).

    Book  MATH  Google Scholar 

  21. M. V. Goganov and L. V. Kapitanskii, “Global Solvability of the Initial Problem for Yang–Mills-Higs Equations,” Zap. LOMI 147, 18–48 (1985); J. Sov. Math. 37, 802–822 (1987).

    Google Scholar 

  22. C. Itzykson and J.-B. Zuber, Quantum Field Theory (Dover Publications, 2005).

    MATH  Google Scholar 

  23. P. Kree, “Calcule symbolique et seconde quantification des fonctions sesquiholomorphes,” C. R. Acad. Sc. Paris Sè. A, 284 (1), A25–A28 (1977).

    MATH  Google Scholar 

  24. P. Kree, “Méthodes holomorphe et méthodes nucléaires en analyse de dimension infinie et la théorie quantique des champs,” Lecture Notes in Math. 644, 212–254 (1977).

    Article  Google Scholar 

  25. P. Kree and R. Raczka, “Kernels and Symbols of Operators in Quantum Field Theory,” Ann. Inst. H. Poincaré, Section A XXVIII, 41–73 (1978).

    MATH  Google Scholar 

  26. H.-H. Kuo, Gaussian Measures in Banach Spaces (Lecture Notes in Math. 463, Springer, 1975).

    Book  MATH  Google Scholar 

  27. Ch. Nash and S. Sen, Topology and Geometry for Physicists (Dover Publications, 2011).

    MATH  Google Scholar 

  28. X. S. Raymond, “Simple Nash–Moser Implicit Function Theorem,” Enseign. Math. 35, 2170–226 (1989).

    MathSciNet  MATH  Google Scholar 

  29. M. Reed and B. Simon, I. Methods of Modern Mathematical Physics (Academic Press, 1972).

    MATH  Google Scholar 

  30. M. Reed and B. Simon, II. Methods of Modern Mathematical Physics (Academic Press, 1975).

    MATH  Google Scholar 

  31. B. Simon, “Some Quantum Operators with Discrete Spectrum But Classically Continuous Spectrum,” Ann. Physics 146, 209–220 (1983).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. M. Shubin, Pseudodifferential Operators and Spectral Theory (Springer, 1987).

    Book  MATH  Google Scholar 

  33. F. Treves, Topological Vector Spaces, Distributions and Kernels (Academic Press, 1967).

    MATH  Google Scholar 

  34. E. Witten, Magic, Mystery, and Matrix, in Arnold, V., et al, Mathematics: Frontiers and Perspectives (Amer. Math. Soc., Providence, 2000, pp. 343–352).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dynin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dynin, A. Mathematical quantum Yang–Mills theory revisited. Russ. J. Math. Phys. 24, 19–36 (2017). https://doi.org/10.1134/S1061920817010022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920817010022

Navigation