R. Siegel and J.R. Howell, Thermal Radiation Heat Transfer (third ed., Hemisphere Publishing Co, Washington DC, 1992).
Google Scholar
A. Sommerfeld, Lectures on Theoretical Physics, Vol. V. Thermodynamics and Statistical Mechanics (Academic Press, New York, 1956, sect. 20).
Google Scholar
L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics. Vol. 5. Statistical Physics. Part 1 (Pergamon, Oxford, 1980, sect. 63).
Google Scholar
H. P. Baltes and E. R. Hilf, Spectra of Finite Systems. A Review of Weyl’S Problem (Zurich: Bibliographisches Institut, 1976).
Google Scholar
A. M. García-García, “Finite-Size Corrections to the Blackbody Radiation Laws,” Phys. Rev. A 78 023806(5) (2008).
ADS
Article
Google Scholar
H. Weyl, “Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spektralgeometrie [About the Boundary Value Problem of the Radiation Theory and the Asymptotic Spectral Geometry],” J. Reine Angew.Math. (Crelle’s journal) 143, 177–202 (1913); http://dx.doi.org/10.1515/crll.1913.143.177; doi:10.1515/crll.1913.143.177.
MATH
Google Scholar
H. Weyl, “Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) [The Asymptotic Law of Distribution of the Eigenvalues of Linear Partial Differential Equations (with an Application to the Theory of Blackbody Radiation)],” Math. Ann. 71, 441–479 (1912).
Article
MATH
MathSciNet
Google Scholar
V. P. Maslov, “Quasithermodynamic Correction to the Stefan-Boltzmann Law,” Theoret. and Math. Phys. 154, 175–176 (2008); http://dx.doi.org/10.1007/s11232-008-0015-x; doi:10.1007/s11232-008-0015-x.
ADS
Article
MATH
MathSciNet
Google Scholar
V. P. Maslov, “Quasithermodynamics and a Correction to the Stefan-Boltzmann Law,” Math. Notes 83, 72–79 (2008); http://dx.doi.org/10.1134/S0001434608010094; doi:10.1134/S0001434608010094.
Article
MATH
MathSciNet
Google Scholar
J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical Antenna Thermal Emitters,” Nature Photonics 3, 658–661 (2009); http://dx.doi.org/10.1038/nphoton.2009.188; doi:10.1038/nphoton.2009.188.
ADS
Article
Google Scholar
J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent Emission of Light by Thermal Sources,” Nature 416, 61–64 (2002), http://dx.doi.org/10.1038/416061a; doi:10.1038/416061a.
ADS
Article
Google Scholar
A. I. Fisenko and S. N. Ivashov, “Determination of the True Temperature of Emitted Radiation Bodies from Generalized Wien’s Displacement Law,” J. Phys. D: Appl. Phys. 32, 2882–2885 (1999), http://dx.doi.org/0022-3727/32/22/309; doi:0022-3727/32/22/309.
ADS
Article
Google Scholar
Bureau International des Poids et Mesures (BIPM), Uncertainty Budgets for Calibration of Radiation Thermometers Below the Silver Point (CCT-WG5 on radiation thermometry, BIPM, Svres, France, 2008).
Google Scholar
P. Saunders and D. R. White, “Physical Basis of Interpolation Equations for Radiation Thermometry,” Metrologia 40, 195–203 (2003); http://dx.doi.org/0026-1394/40/4/309; doi:0026-1394/40/4/309.
ADS
Article
Google Scholar
A. C. Carter, R. U. Datla, T. M. Jung, A.W. Smith, and J. A. Fedchak, “Low-Background Temperature Calibration of Infrared Blackbodies,” Metrologia 43, 46–50 (2006), http://dx.doi.org/10.1088/0026-1394/43/2/S10; doi:10.1088/0026-1394/43/2/S10.
ADS
Article
Google Scholar
S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced Thermal Emission from Individual Antenna-Like Nanoheaters,” Optics Express 15, 11249–11254 (2007).
ADS
Article
Google Scholar
A. C. Parr and R. U. Datla (eds.), Optical Radiometry (Elsevier, Amsterdam, 2005).
Google Scholar
CODATA, prepared by P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA Recommended Values of the Fundamental Physical Constants: 2010,” Rev. Modern. Phys. 84, 1527–1605 (2012).
ADS
Article
Google Scholar
CODATA, prepared by P. J. Mohr and B. N. Taylor, “CODATA Recommended Values of the Fundamental Physical Constants: 1998,” Rev. Modern. Phys. 72, 351–495 (2000).
ADS
Article
MATH
Google Scholar
CODATA, prepared by E. R. Cohen, B. N. Taylor, “The 1986 Adjustment of the Fundamental Physical Constants,” Rev. Modern. Phys. 59, 1121–1148 (1987), http://dx.doi.org/10.1103/RevModPhys.59.1121; doi:10.1103/RevModPhys.59.1121.
ADS
Article
Google Scholar
M. Planck and M. Masius, The Theory of Heat Radiation (Blakinston’s, Philadelphia, 1914, sect. 164).
Google Scholar
A. O. Barvinsky and G. A. Vilkovisky, “Covariant Perturbation Theory. 2: Second Order in the Curvature. General Algorithms,” Nuclear. Phys. B 333, 471–511 (1990), http://dx.doi.org/10.1016/0550-3213(90)90047-H; doi:10.1016/0550-3213(90)90047-H.
ADS
Article
MathSciNet
Google Scholar
A. B. Migdal, Qualitative Methods in Quantum Theory (Nauka, Moscow, 1975, in Russian. English transl. W.A. Benjamin, Reading, 1977).
Google Scholar
H. P. Baltes, “Thermal Radiation in Finite Cavities,” Helvetica Physica Acta 45, 481–529 (1972), http://dx.doi.org/10.3929/ethz-a-000086038; doi:10.3929/ethz-a-000086038.
MathSciNet
Google Scholar
H. P. Baltes and F. K. Kneubühl, “Spectral Density, Thermodynamics and Temporal Coherence of Non-Planckian Black Body Radiation for Small Cavities,” Optics Comm. 2, 14–16 (1970).
ADS
Article
Google Scholar
H. P. Baltes and F. K. Kneubühl, “Spectral Distribution of Cavity Black Body Radiation in the Far Infra Red,” Phys. Lett. A 30, 360–362 (1969).
ADS
Article
Google Scholar
H. P. Baltes and F. K. Kneubühl, “Surface Area Dependent Corrections in the Theory of Black Body Radiation,” Optics Comm. 4, 9–12 (1971).
ADS
Article
Google Scholar
H. P. Baltes, “Deviations from the Stefan Boltzmann Law at Low Temperatures,” Applied Phys. 1, 39–43 (1973), http://dx.doi.org/10.1007/BF00886803; doi:10.1007/BF00886803.
ADS
Article
Google Scholar
H. P. Baltes, “Asymptotic Eigenvalue Distribution for the Wave Equation in a Cylinder of Arbitrary Cross Section,” Phys. Rev. A 6, 2252–2257 (1972), http://dx.doi.org/10.1103/PhysRevA.6.2252; doi:10.1103/PhysRevA.6.2252.
ADS
Article
Google Scholar
K. M. Case and S. C. Chiu, “Electromagnetic Fluctuations in a Cavity,” Phys. Rev. A 1, 1170–1174 (1970), http://dx.doi.org/10.1103/PhysRevA.1.1170; doi:10.1103/PhysRevA.1.1170.
ADS
Article
Google Scholar
R. Balian and C. Bloch, “Distribution of Eigenfrequencies for the Wave Equation in a Finite Domain. II. Electromagnetic Field. Riemannian Spaces,” Ann. Phys. (N.Y.) 64, 271–307 (1971).
ADS
Article
MATH
MathSciNet
Google Scholar
M. Kac, “Can One Hear the Shape of a Drum?” Amer. Math. Month. 73(4), 1–23 (1966).
Article
MATH
Google Scholar
T. J. Quinn and J. E. Martin, “A Radiometric Determination of the Stefan-Boltzmann Constant and Thermodynamic Temperatures Between −40°C and +100°C,” Philos. Trans. Rlos. Soc. Lond. Ser. A 316, 85–189 (1985), http://dx.doi.org/10.1098/rsta.1985.0058; doi:10.1098/rsta.1985.0058.
ADS
Article
Google Scholar
E. J. Gillham, “Recent Investigations in Absolute Radiometry,” Proc. R. Soc. Lond. Ser. A 269, 249–276 (1962), http://dx.doi.org/10.1098/rspa.1962.0174; 10.1098/rspa.1962.0174.
ADS
Article
Google Scholar
J. Guild, “Investigations in Absolute Radiometry,” Proc. R. Soc. Lond. Ser. A 161, 1–38 (1937).
ADS
Article
Google Scholar
W. R. Blevin and W. J. Brown, “A Precise Measurement of the Stefan-Boltzmann Constant,” Metrologia 7, 15–29 (1971), http://dx.doi.org/0026-1394/7/1/003; doi:0026-1394/7/1/003.
ADS
Article
Google Scholar
A. N. Chaba and R. K. Pathria, “Edge and Curvature Effects in Weyl’s Problems,” Phys. Rev. A 8, 3264–3265 (1973), http://dx.doi.org/10.1103/PhysRevA.8.3264; doi:10.1103/PhysRevA.8.3264.
ADS
Article
MathSciNet
Google Scholar
J. E. Martin, T. J. Quinn, and B. Chu, “Further Measurements of Thermodynamic Temperature Using a Total Radiation Thermometer: The Range −130°C to +60°C,” Metrologia 25, 107–112 (1988).
ADS
Article
Google Scholar
S. D. Ward and J. P. Compton, “Intercomparison of Platinum Resistance Thermometers and T68 Calibrations,” Metrologia 15, 31–46 (1979).
ADS
Article
Google Scholar
H. Preston-Thomas, “The International Temperature Scale of 1990 (ITS-90),” Metrologia 27, 3–10 (1990).
ADS
Article
Google Scholar
R. U. Datla, M. C. Croarkin, and A. C. Parr, “Cryogenic Blackbody Calibrations at the National Institute of Standards Technology Low Background Infrared Calibration Facility,” J. Res. Natl. Inst. Stand. Technol. 99, 77–87 (1994).
Article
Google Scholar
B. Fellmuth, “Supplementary Information for the ITS-90: Chapter 1. Introduction. Edition 2012. Bureau International de Poids et Mesures,” Available at http://www.bipm.org/en/publications/mepkelvin/its-90supplementary.html; www.bipm.org.
S. N. Mekhontsev, A. V. Prokhorov, and L. M. Hanssen, “Experimental Characterization of Blackbody Radiation Sources,” In Z. M. Zhang, B. K. Tsai, G. Machin (eds.), Radiometric Temperature Measurements: II. Applications (Elsevier & Academic Press, San Diego, 2010), pp. 57–136.
Chapter
Google Scholar
B. Khlevnoy, “CCPR S1 Supplementary Comparison Spectral Radiance (220 to 2500 nm),” Metrologia 45, 02001 (2008).
ADS
Article
Google Scholar
T. J. Quinn, Temperature (2nd ed., Academic Press, San Diego, 1990, sect. 7.6).
Google Scholar
R. D. Lee, Construction and Operation of a Simple High-Precision Copper-Point Blackbody and Furnace. NBS Technical Note 483 (National Bureau of Standards, Washington DC, 1969).
Google Scholar
Polaron Special Lamps Division, Secondary Standard Lamps for Optical Radiation, Photometric and Pyrometric Measurements (2013).
Google Scholar
F. Han, X. Sun, L. Wu, and Q. Li, “Dual-Wavelength Orthogonally Polarized Radiation Generated by a Tungsten Thermal Source,” Optics Express 21, 28570–28582 (2013).
ADS
Article
Google Scholar
P. Saunders, “Correcting Radiation Thermometry Measurements for the Size-of-Source Effect,” Int. J. Thermophysics 32, 1633–1654 (2011).
ADS
Article
Google Scholar
P. Bloembergen, “Analytical Representations of the Size-of-Source Effect,” Metrologia 46, 534–543 (2009).
ADS
Article
Google Scholar
G. Bimonte, L. Cappellin, G. Carugno, G. Ruoso, and D. Saadeh, “Polarized Thermal Emission by Thin Metal Wires,” New J. Phys. 11, 033014(11) (2009).
ADS
Article
Google Scholar
S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics. 2. Random Fields (second ed., Nauka, Moscow, 1976), in Russian. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics. Vol. 3. Elements of Random Fields (second ed., Springer-Verlag, Berlin, 1987).
Google Scholar
V. A. Golyk, M. Krüger, and M. Kardar, “Heat Radiation from Long Cylindrical Objects,” Phys. Rev. E 85, 046603 (2012).
ADS
Article
Google Scholar
C. E. Gibson, G. T. Fraser, A. C. Parr, and H. W. Yoon, “Once Is Enough in Radiometric Calibrations,” J. Res. Nat. Inst. Stand. Tech. 112, 39–51 (2007).
Article
Google Scholar
V. P. Maslov, “Revision of Probability Theory from the Point of View of Quantum Statistics,” Russ. J. Math. Phys. 14, 66–95 (2007).
Article
MATH
MathSciNet
Google Scholar
P. Erdösh, “On Asymptotic Formulas in the Theory of Partitions,” Bull. Amer. Math. Soc. 52, 185–188 (1946).
Article
MathSciNet
Google Scholar
H. K. Pathria, Statistical Mechanics (second ed., Butterworth-Heinemann, Oxford, 1997).
Google Scholar
P. T. Landsberg and A. De Vos, “The Stefan-Boltzmann Constant in n-Dimensional Space,” J. Phys. A: Math. Gen. 22 1073–1084 (1989).
ADS
Article
MATH
Google Scholar
J. Stefan, “Über die Beziehung zwischen der Wärmestrahlung und der Temperatur [About the Relationship between the Thermal Radiation and Temperature],” Wien. Berichte LXXIX, 391–429 (1879).
Google Scholar
J. Crepeau, “Josef Stefan: His Life and Legacy in the Thermal Sciences,” Exp. Thermal Fluid Science 31, 795–803 (2007).
Article
Google Scholar
R. C. Dougal, “The Centenary of the Fourth-Power Law,” Phys. Educ. 14, 234–238 (1979).
ADS
Article
Google Scholar
P. Becker, P. De Biévre, K. Fujii, M. Glaeser, B. Inglis, H. Luebbig, and G. Mana, “Considerations on Future Redefinitions of the Kilogram, the Mole and of Other Units,” Metrologia 44, 1–14 (2007).
ADS
Article
Google Scholar
Bureau International des Poids et Mesures (BIPM), “On the Possible Future Revision of the International System of Units,” the SI. 24th meeting of the General Conference on Weights and Measures, Oct. 2011.
M. Planck, “Über Irreversible Strahlungsvorgänge [About Irreversible Radiation Processes],” Ann. Phys. 306(1), 69–122 (1900).
Article
Google Scholar
P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP Publishing, Bristol, 2002).
Book
Google Scholar
M. Bacharis, M. Coppins, and J. E. Allen, “Dust in tokamaks: An Overview of the Physical Model of the Dust in Tokamaks Code,” Phys. Plasmas 17, 042505(11) (2010).
ADS
Article
Google Scholar