Skip to main content

On the integral law of thermal radiation

Abstract

The integral law of thermal radiation by finite-size emitters is studied. Two geometrical characteristics of a radiating body or a cavity, its volume and its boundary area, define two terms in its radiance. The term defined by the volume corresponds to the Stefan-Boltzmann law. The term defined by the boundary area is proportional to the third power of temperature and inversely proportional to emitter’s effective size, which is defined as the ratio of its volume to its boundary area. This generalized law is valid for arbitrary temperature and effective size. It is shown that the cubic temperature contribution is observed in experiments. This term explains the intrinsic uncertainty of the NPL experiment on radiometric determination of the Stefan-Boltzmann constant. It is also quantitatively confirmed by data from the NIST calibration of cryogenic blackbodies. Its relevance to the size of source effect in optical radiometry is proposed and supported by the experiments on thermal emission from nano-heaters.

This is a preview of subscription content, access via your institution.

References

  1. R. Siegel and J.R. Howell, Thermal Radiation Heat Transfer (third ed., Hemisphere Publishing Co, Washington DC, 1992).

    Google Scholar 

  2. A. Sommerfeld, Lectures on Theoretical Physics, Vol. V. Thermodynamics and Statistical Mechanics (Academic Press, New York, 1956, sect. 20).

    Google Scholar 

  3. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics. Vol. 5. Statistical Physics. Part 1 (Pergamon, Oxford, 1980, sect. 63).

    Google Scholar 

  4. H. P. Baltes and E. R. Hilf, Spectra of Finite Systems. A Review of Weyl’S Problem (Zurich: Bibliographisches Institut, 1976).

    Google Scholar 

  5. A. M. García-García, “Finite-Size Corrections to the Blackbody Radiation Laws,” Phys. Rev. A 78 023806(5) (2008).

    ADS  Article  Google Scholar 

  6. H. Weyl, “Über die Randwertaufgabe der Strahlungstheorie und asymptotische Spektralgeometrie [About the Boundary Value Problem of the Radiation Theory and the Asymptotic Spectral Geometry],” J. Reine Angew.Math. (Crelle’s journal) 143, 177–202 (1913); http://dx.doi.org/10.1515/crll.1913.143.177; doi:10.1515/crll.1913.143.177.

    MATH  Google Scholar 

  7. H. Weyl, “Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung) [The Asymptotic Law of Distribution of the Eigenvalues of Linear Partial Differential Equations (with an Application to the Theory of Blackbody Radiation)],” Math. Ann. 71, 441–479 (1912).

    Article  MATH  MathSciNet  Google Scholar 

  8. V. P. Maslov, “Quasithermodynamic Correction to the Stefan-Boltzmann Law,” Theoret. and Math. Phys. 154, 175–176 (2008); http://dx.doi.org/10.1007/s11232-008-0015-x; doi:10.1007/s11232-008-0015-x.

    ADS  Article  MATH  MathSciNet  Google Scholar 

  9. V. P. Maslov, “Quasithermodynamics and a Correction to the Stefan-Boltzmann Law,” Math. Notes 83, 72–79 (2008); http://dx.doi.org/10.1134/S0001434608010094; doi:10.1134/S0001434608010094.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. A. Schuller, T. Taubner, and M. L. Brongersma, “Optical Antenna Thermal Emitters,” Nature Photonics 3, 658–661 (2009); http://dx.doi.org/10.1038/nphoton.2009.188; doi:10.1038/nphoton.2009.188.

    ADS  Article  Google Scholar 

  11. J.-J. Greffet, R. Carminati, K. Joulain, J.-P. Mulet, S. Mainguy, and Y. Chen, “Coherent Emission of Light by Thermal Sources,” Nature 416, 61–64 (2002), http://dx.doi.org/10.1038/416061a; doi:10.1038/416061a.

    ADS  Article  Google Scholar 

  12. A. I. Fisenko and S. N. Ivashov, “Determination of the True Temperature of Emitted Radiation Bodies from Generalized Wien’s Displacement Law,” J. Phys. D: Appl. Phys. 32, 2882–2885 (1999), http://dx.doi.org/0022-3727/32/22/309; doi:0022-3727/32/22/309.

    ADS  Article  Google Scholar 

  13. Bureau International des Poids et Mesures (BIPM), Uncertainty Budgets for Calibration of Radiation Thermometers Below the Silver Point (CCT-WG5 on radiation thermometry, BIPM, Svres, France, 2008).

    Google Scholar 

  14. P. Saunders and D. R. White, “Physical Basis of Interpolation Equations for Radiation Thermometry,” Metrologia 40, 195–203 (2003); http://dx.doi.org/0026-1394/40/4/309; doi:0026-1394/40/4/309.

    ADS  Article  Google Scholar 

  15. A. C. Carter, R. U. Datla, T. M. Jung, A.W. Smith, and J. A. Fedchak, “Low-Background Temperature Calibration of Infrared Blackbodies,” Metrologia 43, 46–50 (2006), http://dx.doi.org/10.1088/0026-1394/43/2/S10; doi:10.1088/0026-1394/43/2/S10.

    ADS  Article  Google Scholar 

  16. S. Ingvarsson, L. J. Klein, Y.-Y. Au, J. A. Lacey, and H. F. Hamann, “Enhanced Thermal Emission from Individual Antenna-Like Nanoheaters,” Optics Express 15, 11249–11254 (2007).

    ADS  Article  Google Scholar 

  17. A. C. Parr and R. U. Datla (eds.), Optical Radiometry (Elsevier, Amsterdam, 2005).

    Google Scholar 

  18. CODATA, prepared by P. J. Mohr, B. N. Taylor, and D. B. Newell, “CODATA Recommended Values of the Fundamental Physical Constants: 2010,” Rev. Modern. Phys. 84, 1527–1605 (2012).

    ADS  Article  Google Scholar 

  19. CODATA, prepared by P. J. Mohr and B. N. Taylor, “CODATA Recommended Values of the Fundamental Physical Constants: 1998,” Rev. Modern. Phys. 72, 351–495 (2000).

    ADS  Article  MATH  Google Scholar 

  20. CODATA, prepared by E. R. Cohen, B. N. Taylor, “The 1986 Adjustment of the Fundamental Physical Constants,” Rev. Modern. Phys. 59, 1121–1148 (1987), http://dx.doi.org/10.1103/RevModPhys.59.1121; doi:10.1103/RevModPhys.59.1121.

    ADS  Article  Google Scholar 

  21. M. Planck and M. Masius, The Theory of Heat Radiation (Blakinston’s, Philadelphia, 1914, sect. 164).

    Google Scholar 

  22. A. O. Barvinsky and G. A. Vilkovisky, “Covariant Perturbation Theory. 2: Second Order in the Curvature. General Algorithms,” Nuclear. Phys. B 333, 471–511 (1990), http://dx.doi.org/10.1016/0550-3213(90)90047-H; doi:10.1016/0550-3213(90)90047-H.

    ADS  Article  MathSciNet  Google Scholar 

  23. A. B. Migdal, Qualitative Methods in Quantum Theory (Nauka, Moscow, 1975, in Russian. English transl. W.A. Benjamin, Reading, 1977).

    Google Scholar 

  24. H. P. Baltes, “Thermal Radiation in Finite Cavities,” Helvetica Physica Acta 45, 481–529 (1972), http://dx.doi.org/10.3929/ethz-a-000086038; doi:10.3929/ethz-a-000086038.

    MathSciNet  Google Scholar 

  25. H. P. Baltes and F. K. Kneubühl, “Spectral Density, Thermodynamics and Temporal Coherence of Non-Planckian Black Body Radiation for Small Cavities,” Optics Comm. 2, 14–16 (1970).

    ADS  Article  Google Scholar 

  26. H. P. Baltes and F. K. Kneubühl, “Spectral Distribution of Cavity Black Body Radiation in the Far Infra Red,” Phys. Lett. A 30, 360–362 (1969).

    ADS  Article  Google Scholar 

  27. H. P. Baltes and F. K. Kneubühl, “Surface Area Dependent Corrections in the Theory of Black Body Radiation,” Optics Comm. 4, 9–12 (1971).

    ADS  Article  Google Scholar 

  28. H. P. Baltes, “Deviations from the Stefan Boltzmann Law at Low Temperatures,” Applied Phys. 1, 39–43 (1973), http://dx.doi.org/10.1007/BF00886803; doi:10.1007/BF00886803.

    ADS  Article  Google Scholar 

  29. H. P. Baltes, “Asymptotic Eigenvalue Distribution for the Wave Equation in a Cylinder of Arbitrary Cross Section,” Phys. Rev. A 6, 2252–2257 (1972), http://dx.doi.org/10.1103/PhysRevA.6.2252; doi:10.1103/PhysRevA.6.2252.

    ADS  Article  Google Scholar 

  30. K. M. Case and S. C. Chiu, “Electromagnetic Fluctuations in a Cavity,” Phys. Rev. A 1, 1170–1174 (1970), http://dx.doi.org/10.1103/PhysRevA.1.1170; doi:10.1103/PhysRevA.1.1170.

    ADS  Article  Google Scholar 

  31. R. Balian and C. Bloch, “Distribution of Eigenfrequencies for the Wave Equation in a Finite Domain. II. Electromagnetic Field. Riemannian Spaces,” Ann. Phys. (N.Y.) 64, 271–307 (1971).

    ADS  Article  MATH  MathSciNet  Google Scholar 

  32. M. Kac, “Can One Hear the Shape of a Drum?” Amer. Math. Month. 73(4), 1–23 (1966).

    Article  MATH  Google Scholar 

  33. T. J. Quinn and J. E. Martin, “A Radiometric Determination of the Stefan-Boltzmann Constant and Thermodynamic Temperatures Between −40°C and +100°C,” Philos. Trans. Rlos. Soc. Lond. Ser. A 316, 85–189 (1985), http://dx.doi.org/10.1098/rsta.1985.0058; doi:10.1098/rsta.1985.0058.

    ADS  Article  Google Scholar 

  34. E. J. Gillham, “Recent Investigations in Absolute Radiometry,” Proc. R. Soc. Lond. Ser. A 269, 249–276 (1962), http://dx.doi.org/10.1098/rspa.1962.0174; 10.1098/rspa.1962.0174.

    ADS  Article  Google Scholar 

  35. J. Guild, “Investigations in Absolute Radiometry,” Proc. R. Soc. Lond. Ser. A 161, 1–38 (1937).

    ADS  Article  Google Scholar 

  36. W. R. Blevin and W. J. Brown, “A Precise Measurement of the Stefan-Boltzmann Constant,” Metrologia 7, 15–29 (1971), http://dx.doi.org/0026-1394/7/1/003; doi:0026-1394/7/1/003.

    ADS  Article  Google Scholar 

  37. A. N. Chaba and R. K. Pathria, “Edge and Curvature Effects in Weyl’s Problems,” Phys. Rev. A 8, 3264–3265 (1973), http://dx.doi.org/10.1103/PhysRevA.8.3264; doi:10.1103/PhysRevA.8.3264.

    ADS  Article  MathSciNet  Google Scholar 

  38. J. E. Martin, T. J. Quinn, and B. Chu, “Further Measurements of Thermodynamic Temperature Using a Total Radiation Thermometer: The Range −130°C to +60°C,” Metrologia 25, 107–112 (1988).

    ADS  Article  Google Scholar 

  39. S. D. Ward and J. P. Compton, “Intercomparison of Platinum Resistance Thermometers and T68 Calibrations,” Metrologia 15, 31–46 (1979).

    ADS  Article  Google Scholar 

  40. H. Preston-Thomas, “The International Temperature Scale of 1990 (ITS-90),” Metrologia 27, 3–10 (1990).

    ADS  Article  Google Scholar 

  41. R. U. Datla, M. C. Croarkin, and A. C. Parr, “Cryogenic Blackbody Calibrations at the National Institute of Standards Technology Low Background Infrared Calibration Facility,” J. Res. Natl. Inst. Stand. Technol. 99, 77–87 (1994).

    Article  Google Scholar 

  42. B. Fellmuth, “Supplementary Information for the ITS-90: Chapter 1. Introduction. Edition 2012. Bureau International de Poids et Mesures,” Available at http://www.bipm.org/en/publications/mepkelvin/its-90supplementary.html; www.bipm.org.

  43. S. N. Mekhontsev, A. V. Prokhorov, and L. M. Hanssen, “Experimental Characterization of Blackbody Radiation Sources,” In Z. M. Zhang, B. K. Tsai, G. Machin (eds.), Radiometric Temperature Measurements: II. Applications (Elsevier & Academic Press, San Diego, 2010), pp. 57–136.

    Chapter  Google Scholar 

  44. B. Khlevnoy, “CCPR S1 Supplementary Comparison Spectral Radiance (220 to 2500 nm),” Metrologia 45, 02001 (2008).

    ADS  Article  Google Scholar 

  45. T. J. Quinn, Temperature (2nd ed., Academic Press, San Diego, 1990, sect. 7.6).

    Google Scholar 

  46. R. D. Lee, Construction and Operation of a Simple High-Precision Copper-Point Blackbody and Furnace. NBS Technical Note 483 (National Bureau of Standards, Washington DC, 1969).

    Google Scholar 

  47. Polaron Special Lamps Division, Secondary Standard Lamps for Optical Radiation, Photometric and Pyrometric Measurements (2013).

    Google Scholar 

  48. F. Han, X. Sun, L. Wu, and Q. Li, “Dual-Wavelength Orthogonally Polarized Radiation Generated by a Tungsten Thermal Source,” Optics Express 21, 28570–28582 (2013).

    ADS  Article  Google Scholar 

  49. P. Saunders, “Correcting Radiation Thermometry Measurements for the Size-of-Source Effect,” Int. J. Thermophysics 32, 1633–1654 (2011).

    ADS  Article  Google Scholar 

  50. P. Bloembergen, “Analytical Representations of the Size-of-Source Effect,” Metrologia 46, 534–543 (2009).

    ADS  Article  Google Scholar 

  51. G. Bimonte, L. Cappellin, G. Carugno, G. Ruoso, and D. Saadeh, “Polarized Thermal Emission by Thin Metal Wires,” New J. Phys. 11, 033014(11) (2009).

    ADS  Article  Google Scholar 

  52. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Introduction to Statistical Radiophysics. 2. Random Fields (second ed., Nauka, Moscow, 1976), in Russian. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics. Vol. 3. Elements of Random Fields (second ed., Springer-Verlag, Berlin, 1987).

    Google Scholar 

  53. V. A. Golyk, M. Krüger, and M. Kardar, “Heat Radiation from Long Cylindrical Objects,” Phys. Rev. E 85, 046603 (2012).

    ADS  Article  Google Scholar 

  54. C. E. Gibson, G. T. Fraser, A. C. Parr, and H. W. Yoon, “Once Is Enough in Radiometric Calibrations,” J. Res. Nat. Inst. Stand. Tech. 112, 39–51 (2007).

    Article  Google Scholar 

  55. V. P. Maslov, “Revision of Probability Theory from the Point of View of Quantum Statistics,” Russ. J. Math. Phys. 14, 66–95 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  56. P. Erdösh, “On Asymptotic Formulas in the Theory of Partitions,” Bull. Amer. Math. Soc. 52, 185–188 (1946).

    Article  MathSciNet  Google Scholar 

  57. H. K. Pathria, Statistical Mechanics (second ed., Butterworth-Heinemann, Oxford, 1997).

    Google Scholar 

  58. P. T. Landsberg and A. De Vos, “The Stefan-Boltzmann Constant in n-Dimensional Space,” J. Phys. A: Math. Gen. 22 1073–1084 (1989).

    ADS  Article  MATH  Google Scholar 

  59. J. Stefan, “Über die Beziehung zwischen der Wärmestrahlung und der Temperatur [About the Relationship between the Thermal Radiation and Temperature],” Wien. Berichte LXXIX, 391–429 (1879).

    Google Scholar 

  60. J. Crepeau, “Josef Stefan: His Life and Legacy in the Thermal Sciences,” Exp. Thermal Fluid Science 31, 795–803 (2007).

    Article  Google Scholar 

  61. R. C. Dougal, “The Centenary of the Fourth-Power Law,” Phys. Educ. 14, 234–238 (1979).

    ADS  Article  Google Scholar 

  62. P. Becker, P. De Biévre, K. Fujii, M. Glaeser, B. Inglis, H. Luebbig, and G. Mana, “Considerations on Future Redefinitions of the Kilogram, the Mole and of Other Units,” Metrologia 44, 1–14 (2007).

    ADS  Article  Google Scholar 

  63. Bureau International des Poids et Mesures (BIPM), “On the Possible Future Revision of the International System of Units,” the SI. 24th meeting of the General Conference on Weights and Measures, Oct. 2011.

  64. M. Planck, “Über Irreversible Strahlungsvorgänge [About Irreversible Radiation Processes],” Ann. Phys. 306(1), 69–122 (1900).

    Article  Google Scholar 

  65. P. K. Shukla and A. A. Mamun, Introduction to Dusty Plasma Physics (IOP Publishing, Bristol, 2002).

    Book  Google Scholar 

  66. M. Bacharis, M. Coppins, and J. E. Allen, “Dust in tokamaks: An Overview of the Physical Model of the Dust in Tokamaks Code,” Phys. Plasmas 17, 042505(11) (2010).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. V. Gusev.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gusev, Y.V. On the integral law of thermal radiation. Russ. J. Math. Phys. 21, 460–471 (2014). https://doi.org/10.1134/S1061920814040049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920814040049

Keywords

  • Thermal Radiation
  • Thermal Emission
  • Dusty Plasma
  • Radiant Temperature
  • Boundary Area