Russian Journal of Mathematical Physics

, Volume 21, Issue 3, pp 379–385 | Cite as

Transformations of measures via their generalized densities

  • J. MontaldiEmail author
  • O. G. Smolyanov


In this note we describe algorithms for obtaining formulae for transformations of measures on infinite dimensional topological vector spaces or manifolds, generated by transformations of the domains of the measures and by transformations of the range.


Manifold Radon Riemannian Manifold Generalize Density Gaussian Measure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. I. Averbukh, O. G. Smolyanov, and S. V. Fomin, “Generalized functions and differential equations in linear spaces. I. Differentiable measures,” Trudy Moskov. Mat. Obshch. 24, 133–174 (1971) [in Russian].zbMATHGoogle Scholar
  2. 2.
    A. I. Kirillov, “Infinite-Dimensional Analysis and Quantum Theory as Semimartingale Calculi,” Uspekhi Mat. Nauk 493(297), 43–92 (1994) [Russian Math. Surveys 49, 43–95 (1994)].MathSciNetGoogle Scholar
  3. 3.
    O. G. Smolyanov, and H. v. Weizsäcker, “Differentiable Families of Measures,” J. Funct. Anal. 118, 454–476 (1993).CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    O. G. Smolyanov, and H. v. Weizsäcker, “Change of Measures and Their Logarithmic Derivatives Under Smooth Transformations,” Comptes Rend. Acad. Sci. Paris 321, 103–108 (1995).zbMATHGoogle Scholar
  5. 5.
    O. G. Smolyanov, and H. v. Weizsäcker, “Smooth Probability Measures and Associated Differential Operators,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2, 51–78 (1999).CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    N. A. Sidorova, O. G. Smolyanov, H. v. Weizsäcker and O. Wittich, “The Surface Limit of Brownian Motion in Tubular Neighborhoods of an Embedded Riemannian Manifold,” J. Funct. Anal. 206, 391–413 (2004).CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    P. Cartier and C. DeWitt-Morette, Functional Integration (Cambridge University Press, 2006).CrossRefzbMATHGoogle Scholar
  8. 8.
    K. Fujikawa and H. Suzuki, Path Integrals and Quantum Anomalies (Oxford University Press, 2004, latest edition 2013).CrossRefzbMATHGoogle Scholar
  9. 9.
    J. Montaldi and K. Steckles, “Classification of Symmetry Groups for Planar N-Body Choreographies,” Forum Math. Sigma 1, pp. 55 (2013).CrossRefMathSciNetGoogle Scholar
  10. 10.
    C. DeWitt-Morette, K. D. Elworthy, B. L. Nelson, and G. Sammelman, “A Stochastic Scheme for Constructing Solutions of the Schrödinger Equation” Ann. Inst. Henri Poincaré 32, 327–341 (1980).MathSciNetGoogle Scholar
  11. 11.
    L. Onsager and S. Machlup, “Fluctuations and irreversible processes,” Phys. Rev. 91, 1505–1512, 1512–1515 (1953).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    O. G. Smolyanov and A. Truman, “Change of Variable Formulae for Feynman Pseudomeasures,” Theor. Math. Phys. 119,3 (1999), 677–686.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.University of ManchesterManchesterUK
  2. 2.Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations