Skip to main content
Log in

Embedding theorem for weighted Sobolev classes on a John domain with weights that are functions of the distance to some h-set

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

Let Ω be a John domain, let Γ ⊂ ∂Ω be an h-set, and let g and v be weights on Ω that are distance functions to the set Γ of special form. In the paper, sufficient conditions are obtained under which the Sobolev weighted class W r p,g (Ω) is continuously embedded in the space L q,v (Ω). Moreover, bounds for the approximation of functions in W r p,g (Ω) by polynomials of degree not exceeding r − 1 in L q,v (\(\tilde \Omega \)) are found, where \(\tilde \Omega \) is a subdomain generated by a subtree of the tree T defining the structure of Ω.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Adams, “Traces of Potentials. II,” Indiana Univ. Math. J., 22, 907–918 (1972/73).

    Article  MathSciNet  Google Scholar 

  2. D.R. Adams, “A Trace Inequality for Generalized Potentials,” Studia Math. 48, 99–105 (1973).

    MathSciNet  MATH  Google Scholar 

  3. K. F. Andersen and H. P. Heinig, “Weighted Norm Inequalities for Certain Integral Operators,” SIAM J. Math. Anal. 14, 834–844 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  4. F. Antoci, “Some Necessary and Some Sufficient Conditions for the Compactness of the Embedding of Weighted Sobolev Spaces,” Ricerche Mat. 52(1), 55–71 (2003).

    MathSciNet  MATH  Google Scholar 

  5. O. V. Besov, “On the Compactness of Embeddings of Weighted Sobolev Spaces on a Domain with Irregular Boundary,” Tr. Mat. Inst. Steklov., Ross. Akad. Nauk 232, 72–93 (2001) [Proc. Steklov Inst. Math. 232, 66–87 (2001)].

    MathSciNet  Google Scholar 

  6. O. V. Besov, “Sobolev’s Embedding Theorem for a Domain with Irregular Boundary,” Mat. Sb. 192(3), 3–26 (2001) [Sb. Math. 192, 323–346 (2001)].

    Article  MathSciNet  Google Scholar 

  7. O. V. Besov, “On the Compactness of Embeddings of Weighted Sobolev Spaces on a Domain with an Irregular Boundary,” Dokl. Akad. Nauk 376(6), 727–732 (2001) [Dokl. Math. 63 (1), 95–100 (2001)].

    MathSciNet  Google Scholar 

  8. O. V. Besov, “Integral Estimates for Differentiable Functions on Irregular Domains,” Mat. Sb. 201(12), 69–82 (2010) [Sb. Math. 201, 1777–1790 (2010)].

    Article  MathSciNet  Google Scholar 

  9. O. V. Besov, V. P. Il’in and S. M. Nikol’skii, Integral Representations of Functions, and Imbedding Theorems (“Nauka,” Moscow, 1996; transl. of the 1st ed.: Winston, Washington DC; Wiley, New York, 1978–1979).

    MATH  Google Scholar 

  10. M. Bricchi, “Existence and Properties of h-Sets,” Georgian Mathematical Journal 9(1), 13–32 (2002).

    MathSciNet  MATH  Google Scholar 

  11. M. Bricchi, “Compact Embeddings between Besov Spaces Defined on h-Sets,” Funct. Approx. Comment. Math. 30, 7–36 (2002).

    MathSciNet  MATH  Google Scholar 

  12. A. M. Caetano and S. Lopes, “Spectral Theory for the Fractal Laplacian in the Context of h-Sets,” Math. Nachr. 284(1), 5–38 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  13. D. E. Edmunds and H. Triebel, “Spectral Theory for Isotropic Fractal Drums,” C. R. Acad. Sci. Paris Sér. I Math. 326, 1269–1274 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. D. E. Edmunds and H. Triebel, “Eigenfrequencies of Isotropic Fractal Drums,” Operator Theory Adv. Appl. 110, 81–102 (1999).

    MathSciNet  Google Scholar 

  15. D. E. Edmunds and H. Triebel, “Function Spaces, Entropy Numbers, Differential Operators,” Cambridge Tracts in Math. 120, (Cambridge, Cambridge University Press, 1996).

  16. A. El Kolli, “n-ièmeépaisseur dans les espaces de Sobolev,” J. Approx. Theory 10, 268–294 (1974).

    Article  MATH  Google Scholar 

  17. W.D. Evans and D.J. Harris, “Fractals, Trees and the Neumann Laplacian,” Math. Ann. 296(3), 493–527 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  18. W.D. Evans, D.J. Harris and J. Lang, “Two-Sided Estimates for the Approximation Numbers of Hardy-Type Operators in L and L 1,” Studia Math. 130(2), 171–192 (1998).

    MathSciNet  MATH  Google Scholar 

  19. W. D. Evans, D. J. Harris and J. Lang, “The Approximation Numbers of Hardy-Type Operators on Trees,” Proc. London Math. Soc. 83(2), 390–418 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  20. W. D. Evans, D. J. Harris and L. Pick, “Weighted Hardy and Poincaré Inequalities on Trees,” J. London Math. Soc. 52(2), 121–136 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  21. V. Gol’dshtein and A. Ukhlov, “Weighted Sobolev spaces and embedding theorems”, Trans. Amer. Math. Soc., 361(7), 3829–3850 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Gurka and B. Opic, “Continuous and Compact Imbeddings of Weighted Sobolev Spaces. I,” Czech. Math. J. 38(113)(4), 730–744 (1988).

    MathSciNet  Google Scholar 

  23. P. Gurka and B. Opic, “Continuous and Compact Imbeddings of Weighted Sobolev Spaces. II,” Czech. Math. J. 39(114)(1), 78–94 (1989).

    MathSciNet  Google Scholar 

  24. P. Gurka and B. Opic, “Continuous and Compact Imbeddings of Weighted Sobolev Spaces. III,” Czech. Math. J. 41(116)(2), 317–341 (1991).

    MathSciNet  Google Scholar 

  25. D.D. Haroske and I. Piotrowska, “Atomic Decompositions of Function Spaces with Muckenhoupt Weights and Some Relation to Fractal Analysis,” Math. Nachr. 281(10), 1476–1494 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  26. H.P. Heinig, “Weighted Norm Inequalities for Certain Integral Operators, II,” Proc. Amer. Math. Soc. 95 (1985), 387–395.

    Article  MathSciNet  MATH  Google Scholar 

  27. Jain Pankaj, Bansal Bindu and Jain Pawan K., “Continuous and Compact Imbeddings of Weighted Sobolev Spaces,” Acta Sci. Math. (Szeged) 66(3–4), 665–677 (2000).

    MathSciNet  MATH  Google Scholar 

  28. Jain Pankaj, Bansal Bindu and Jain Pawan K., “Certain Imbeddings of Sobolev Spaces with Power Type Weights,” Indian J. Math. bf 44(3), 303–321 (2002).

    MATH  Google Scholar 

  29. Jain Pankaj, Bansal Bindu and Jain Pawan K., “Certain Imbeddings of Weighted Sobolev Spaces,” Math. Ineq. Appl. 6(1), 105–120 (2003).

    MATH  Google Scholar 

  30. J. Kadlec and A. Kufner, “Characterization of Functions with Zero Traces by Integrals Width Weight Functions, I,” Časopis. pěst. mat. 91, 463–471 (1966).

    MathSciNet  MATH  Google Scholar 

  31. J. Kadlec and A. Kufner, “Characterization of Functions with Zero Traces by Integrals Width Weight Functions, II,” Časopis. pěst. mat. 92, 16–28 (1967).

    MathSciNet  MATH  Google Scholar 

  32. L.D. Kudryavtsev, “Direct and Inverse Imbedding Theorems. Applications to the Solution of Elliptic Equations by Variational Methods,” Tr. Mat. Inst. Steklov. 55, 3–182 (1959) [Russian].

    Google Scholar 

  33. L. D. Kudryavtsev and S. M. Nikol’skii, “Spaces of Differentiable Functions of Several Variables and Imbedding Theorems,” in Analiz-3 (VINITI, Moscow, 1988), Itogi Nauki Tekh., Ser.: Sovrem. Probl. Mat., Fundam. Napravl. 26, 5–157 [(Analysis III (Springer, Berlin, 1991), Encycl. Math. Sci. 26, pp. 1–140].

    Google Scholar 

  34. A. Kufner, “Einige Eigenschaften der Sobolevschen Räume mit Belegungsfunktionen,” Czech. Math. J. 15(90), 597–620 (1965).

    MathSciNet  Google Scholar 

  35. A. Kufner, “Imbedding Theorems for General Sobolev Weight Spaces,” Ann. Scuola Sup. Pisa 23, 373–386 (1969).

    MathSciNet  MATH  Google Scholar 

  36. A. Kufner, Weighted Sobolev Spaces Teubner-Texte Math. 31 (Teubner, Leipzig, 1980).

    Google Scholar 

  37. A. Kufner and B. Opic, “Remark on Compactness of Imbeddings in Weighted Spaces,” Math. Nachr. 133, 63–70 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  38. J. Lehrbäck, “Weighted Hardy Inequalities beyond Lipschitz Domains,” Xiv:1209.0588v1.

  39. G. Leoni, A First Course in Sobolev Spaces, Graduate Studies in Mathematics, vol. 105 (AMS, Rhode Island, Providence, 2009).

    MATH  Google Scholar 

  40. M.A. Lifshits, “Bounds for Entropy Numbers for Some Critical Operators,” Trans. Amer. Math. Soc. 364(4), 1797–1813 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  41. M.A. Lifshits and W. Linde, “Compactness Properties of Weighted Summation Operators on Trees,” Studia Math. 202(1), 17–47 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  42. M.A. Lifshits and W. Linde, “Compactness Properties of Weighted Summation Operators on Trees — the Critical Case,” Studia Math. 206(1), 75–96 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  43. P.I. Lizorkin and M. Otelbaev, “Imbedding and Compactness Theorems for Spaces of Sobolev Type with Weights. I,” Mat. Sb. 108(3), 358–377 (1979) [Math. USSR Sb. 36 (3), 331–349 (1980)].

    MathSciNet  Google Scholar 

  44. P.I. Lizorkin and M. Otelbaev, “Imbedding and Compactness Theorems for Spaces of Sobolev Type with Weights. II,” Mat. Sb. 112(1), 56–85 (1980) [Math. USSR Sb. 40 (1), 51–77 (1981)].

    MathSciNet  Google Scholar 

  45. V. G. Maz’ja [Maz’ya], Sobolev Spaces (Leningrad. Univ., Leningrad, 1985; Springer, Berlin-New York, 1985).

    MATH  Google Scholar 

  46. S.D. Moura, Function Spaces of Generalized Smoothness, Dissertationes in Math., 2001.

    Google Scholar 

  47. K. Naimark and M. Solomyak, “Geometry of Sobolev Spaces on Regular Trees and the Hardy Inequality,” Russian J. Math. Phys. 8(3), 322–335 (2001).

    MathSciNet  MATH  Google Scholar 

  48. J. Nečas, “Sur une méthode pour résoudre les equations aux dérivées partielles dy type elliptique, voisine de la varitionelle,” Ann. Scuola Sup. Pisa 16(4), 305–326 (1962).

    MATH  Google Scholar 

  49. I. Piotrowska, “Traces on Fractals of Function Spaces with Muckenhoupt Weights,” Funct. Approx. Comment. Math. 36, 95–117 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  50. I. Piotrowska, “Entropy and Approximation Numbers of Embeddings betweenWeighted Besov Spaces,” Function spaces VIII, 173–185. Banach Center Publ. 79 (Polish Acad. Sci. Inst. Math., Warsaw, 2008).

    Google Scholar 

  51. Yu.G. Reshetnyak, “Integral Representations of Differentiable Functions in Domains with a Nonsmooth Boundary,” Sibirsk. Mat. Zh. 21(6), 108–116 (1980) (in Russian).

    MathSciNet  MATH  Google Scholar 

  52. Yu.G. Reshetnyak, “A Remark on Integral Representations of Differentiable Functions of Several Variables,” Sibirsk. Mat. Zh. 25(5), 198–200 (1984) (in Russian).

    MathSciNet  MATH  Google Scholar 

  53. S. L. Sobolev, “On a Theorem of Functional Analysis,” Mat. Sb. 4(3), 471–497 (1938) [Amer. Math. Soc. Transl. 34 (2), 39–68 (1963)].

    MATH  Google Scholar 

  54. M. Solomyak, “On Approximation of Functions from Sobolev Spaces on Metric Graphs,” J. Approx. Theory 121(2), 199–219 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  55. H. Triebel, “Interpolation Properties of ɛ-Entropy and Widths. Geometric Characteristics of Function Spaces of Sobolev — Besov Type,” Mat. Sbornik 98, 27–41 (1975) [in Russian].

    MathSciNet  Google Scholar 

  56. H. Triebel, Interpolation Theory. Function Spaces. Differential Operators (Deutsch. Verl. Wiss., Berlin, 1978; Mir, Moscow, 1980).

    Google Scholar 

  57. H. Triebel, Fractals and Spectra (Birkhäuser, Basel, 1997).

    Book  MATH  Google Scholar 

  58. H. Triebel, Theory of Function Spaces. III (Birkhäuser, Basel, 2006).

    MATH  Google Scholar 

  59. D. E. Edmunds and W. D. Evans, Hardy Operators, Function Spaces and Embeddings (Springer-Verlag, Berlin, 2004).

    Book  MATH  Google Scholar 

  60. H. Triebel, “Approximation Numbers in Function Spaces and the Distribution of Eigenvalues of Some Fractal Elliptic Operators,” J. Approx. Theory 129(1), 1–27 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  61. B. O. Turesson, Nonlinear Potential Theory and Weighted Sobolev Spaces, Lect. Notes Math., 1736 (Springer, Berlin, 2000).

    Book  MATH  Google Scholar 

  62. A. A. Vasil’eva, “Widths of Weighted Sobolev Classes on a John Domain,” Proc. Math. Inst. Steklov 280, 91–119 (2013).

    Article  Google Scholar 

  63. A. A. Vasil’eva, “Widths ofWeighted Sobolev Classes on a John Domain: Strong Singularity at a Point” (submitted to Rev. Mat. Complut.).

  64. A. A. Vasil’eva, “Kolmogorov and Linear Widths of the Weighted Besov Classes with Singularity at the Origin,” J. Appr. Theory 167, 1–41 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  65. G. N. Yakovlev [Jakovlev], “Density of Finitary Functions in Weight Spaces,” Dokl. Akad. Nauk SSSR 170(4), 797–798 (1966) [in Russian].

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by RFBR grants nos. 13-01-00022 and 12-01-00554.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasil’eva, A.A. Embedding theorem for weighted Sobolev classes on a John domain with weights that are functions of the distance to some h-set. Russ. J. Math. Phys. 20, 360–373 (2013). https://doi.org/10.1134/S1061920813030102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920813030102

Keywords

Navigation