Skip to main content
Log in

Uniformization of nonlocal elliptic operators and KK-theory

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

By a pseudodifferential uniformization of a nonlocal elliptic operator we mean the procedure of reducing the operator to a pseudodifferential operator with a controlled modification of the index. In the paper, we suggest an approach to solving the uniformization problem; this approach uses the reduction of the symbol of a nonlocal operator to the symbol of a pseudodifferential operator. The technical apparatus here is Kasparov’s KK-theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Connes, “C* algèbres et géométrie différentielle,” C. R. Acad. Sci. Paris Sér. A-B 290(13), A599–A604 (1980).

    MathSciNet  Google Scholar 

  2. A. B. Antonevich and A. V. Lebedev, “Functional Equations and Functional Operator Equations. A C*-Algebraic Approach,” Proc. of the St. Petersburg Math. Soc. VI, 199 of Amer. Math. Soc. Transl. Ser. 2, 25–116 (Amer. Math. Soc., Providence, RI, 2000).

    Google Scholar 

  3. V. E. Nazaikinskii, A. Yu. Savin and B. Yu. Sternin, Elliptic Theory and Noncommutative Geometry (Operator Theory: Advances and Applications 183, Birkhäuser Verlag, Basel, 2008).

    MATH  Google Scholar 

  4. A. Connes and H. Moscovici, “Type III and Spectral Triples,” Traces in number theory, geometry and quantum fields, Aspects Math., E38, 57–71 (Friedr. Vieweg, Wiesbaden, 2008).

    MathSciNet  Google Scholar 

  5. A. Savin and B. Sternin, “Elliptic Theory for Operators Associated with Diffeomorphisms of Smooth Manifolds,” Pseudo-Differential Operators, Generalized Functions and Asymptotics 231, OperatorTheory: Advances and Applications (Birkhäuser, 1–26, 2013) arXiv:1207.3017.

  6. M. F. Atiyah and I. M. Singer, “The Index of Elliptic Operators I,” Ann. of Math. 87, 484–530 (1968).

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Yu. Savin and B. Yu. Sternin, “Nonlocal Elliptic Operators for Compact Lie Groups,” Dokl. Math. 81(2), 258–261 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Yu. Sternin, “On a Class of Nonlocal Elliptic Operators for Compact Lie Groups. Uniformization and Finiteness Theorem,” Cent. Eur. J. Math. 9(4), 814–832 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Savin and B. Sternin, “Index of Elliptic Operators for Diffeomorphisms of Manifolds,” J. Noncommutative Geometry 7 (2013); arXiv:1106.4195.

    Google Scholar 

  10. A.Yu. Savin, B. Yu. Sternin and E. Schrohe, “Index Problem for Elliptic Operators Associated with a Diffeomorphism of a Manifold and Uniformization,” Dokl. Math. 84(3), 846–849 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  11. A.S. Mishchenko, “Infinite-Dimensional Representations of Discrete Groups, and Higher Signatures,” Mathematics of the USSR-Izvestiya 8(1), 85–111 (1974).

    Article  ADS  Google Scholar 

  12. G. Kasparov, “Equivariant KK-Theory and the Novikov Conjecture,” Inv. Math. 91(1), 147–201 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. A. Yu. Savin and B.Yu. Sternin, “Uniformization of Nonlocal Elliptic Operators and KK-Theory,” Dokl. Math. 87(1), 20–22 (2013).

    Article  MATH  Google Scholar 

  14. D. P. Williams, Crossed Products of C*-Algebras (Mathematical Surveys and Monographs 134, American Mathematical Society, Providence, RI, 2007).

    Book  MATH  Google Scholar 

  15. A. Antonevich, M. Belousov and A. Lebedev, Functional Differential Equations. II. C*-Applications. Parts 1, 2 (Number 94, 95 in Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman, Harlow, 1998).

    Google Scholar 

  16. S. Helgason, Differential Geometry and Symmetric Spaces (Academic Press, New-York London, 1962).

    MATH  Google Scholar 

  17. G. Luke, “Pseudodifferential Operators on Hilbert Bundles,” J. Differential Equations 12, 566–589 (1972).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. B. Blackadar, K-Theory for Operator Algebras (Number 5 in Mathematical Sciences Research Institute Publications. Cambridge University Press, 1998, Second edition).

    MATH  Google Scholar 

  19. A. Connes, G. Skandalis, “The Longitudinal Index Theorem for Foliations,” Publ. Res. Inst. Math. Sci. 20(6), 1139–1183 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  20. J. A. Wolf, “Essential Self-Adjointness for the Dirac Operator and Its Square,” Indiana Univ. Math. J. 22, 611–640 (1972/73).

    Article  MathSciNet  Google Scholar 

  21. N. Higson, G. Kasparov,“E-Theory and KK-Theory for Groups which Act Properly and Isometrically on Hilbert Space,” Invent. Math. 144(1), 23–74 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. J.-L. Tu, “The Gamma Element for Groups Which Admit a Uniform Embedding into Hilbert Space,” Operator Theory: Advances and Applications 153 (Birkhäuser Basel,, 2004), pp. 271–286.

    Article  Google Scholar 

  23. G. G. Kasparov, “The Operator K-Functor and Extentions of C*-Algebras,” Math. USSR, Izv. 16, 513–672 (1981).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savin, A.Y., Sternin, B.Y. Uniformization of nonlocal elliptic operators and KK-theory. Russ. J. Math. Phys. 20, 345–359 (2013). https://doi.org/10.1134/S1061920813030096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920813030096

Keywords

Navigation