Skip to main content
Log in

On the statistical theory of spatial structure formation in random media

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

It is shown that, in parametrically excited stochastic dynamic systems described by partial differential equations, space structures (clustering) can be formed with probability 1 due to rare events occurring with probability tending to zero. Such problems arise in hydrodynamics, magnetohydrodynamics, plasma physics, astrophysics, and radiophysics.

Chaos is the place which serves to contain all things; for if this had not subsisted neither earth nor water nor the rest of the elements, nor the Universe a whole, could have been constructed… Sextus Empiricus, Against the Physics, against the Ethicists, R. G. Bury, p. 217, Harvard University Press, 1997.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.W. Anderson, “Absence of Diffusion in Certain Random Lattices,” Phys. Rev. 108, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  2. I.M. Lifshits, S.A. Gredeskul, L.A. Pastur, Introduction to the Theory of Disordered Solids (Nauka, Moscow, 1982; John Wiley, New York 1988).

    Google Scholar 

  3. V.I. Klyatskin, and A.I. Saichev, “Statistical and Dynamical Localization of Plane Waves in Randomly Layered Media,” Uspekhi Fiz. Nauk 162, 161–194 (1992) [Sov. Phys. Usp. 35, 231–194 (1992)].

    Article  Google Scholar 

  4. V.I. Klyatskin, and D. Gurari, “Coherent Phenomena in Stochastic Dynamical Systems,” Phys. Usp. 169, 171–207 (1999) [Phyaics-Uspekhi 42, 165–198 (1999)].

    Article  Google Scholar 

  5. V.I. Klyatskin, “Integral Characteristics: a Key to Understanding Structure Formation in Stochastic Dynamical Systems,” Phys. Usp. 53, 441–464 (2011).

    Article  ADS  Google Scholar 

  6. V.I. Klyatskin, and A.I. Saichev, “To Statistical Theory of Diffusion of Floating Tracers in Random Velocity Field,” Zh. Éksp. Teor. Fiz. 111, 1297–1313 (1997) [JETP 84, 716–724 (1997)].

    Google Scholar 

  7. V.I. Klyatskin, and O.G. Chkhetiani, “On the Diffusion and Clustering of a Magnetic Field in Random Velocity Fields,” Zh. Éksp. Teor. Fiz. 136, 400–412 (2009) [JETP 109, 345–356 (2009)].

    Google Scholar 

  8. V.I. Klyatskin, and I.G. Yakushkin, “Statistical Theory of the Propagation of Optical Radiation in Turbulent Media,” Zh. éEksp. Teor. Fiz. 111, 2044–2059 (1997) [JETP 84, 1114–1121 (1997)].

    Google Scholar 

  9. V.I. Klyatskin, “Propagation of Electromagnetic Waves in Randomly Inhomogeneous Media as a Problem of Statistical Mathematical Physics,” Uspekhi Fiz. Nauk 174, 177–195 (2004) [Phys. Usp. 47, 169–186 (2004)].

    Article  Google Scholar 

  10. V.I. Klyatskin, Stochastic Equations through the Eye of the Physicist: Basic Concepts, Exact Results and Asymptotic Approximations (Fizmatlit, Moscow, 2001; Elsevier, Amsterdam, 2005); Dynamics of Stochastic Systems (Fizmatlit, Moscow, 2002; Elsevier, Amsterdam, 2005).

    Google Scholar 

  11. V.I. Klyatskin, Lectures on Dynamics of Stochastic Systems (Elsevier, Amsterdam, 2010).

    Google Scholar 

  12. V.I. Klyatskin, Essays on the Dynamics of Stochastic Systems (URSS, Moscow, 2012) [in Russian].

    Google Scholar 

  13. http://www.gazeta.ru/science/2011/06/17a3664677.shtml.

  14. Ya.B. Zel’dovich, S.A. Molchanov, A.A. Ruzmaikin, and D.D. Sokolov, “lntermittency of Passive Fields in Random Media,” Zh. Éksp. Teor. Fiz. 89, 2061–2072 (1985) [Sov. Phys. JETP 62, 1188–1194 (1985)].

    Google Scholar 

  15. Ya.B. Zel’dovich, S.A. Molchanov, A.A. Ruzmaikin, and D.D. Sokolov, “Intermittency in Random Media,” Uspekhi Fiz. Nauk 152, 3–32 (1987) [Sov. Phys. Usp. 30, 353–369 (1987)].

    Article  MathSciNet  Google Scholar 

  16. A.S. Mikhailov, and I.V. Uporov, “Critical Phenomena in Media with Breeding, Decay, and Diffusion,” Uspekhi Fiz. Nauk 144, 79–112 (1984) [Sov. Phys. Usp. 27, 695–714 (1984)].

    Article  Google Scholar 

  17. L.D. Landau, and E.M. Lifshitz, Course of Theoretical Physics, Vol.8: Electrodynamics of Continuous Media (Nauka, Moscow, 1982; Pergamon, Oxford, 1984)].

    Google Scholar 

  18. V.I. Klyatskin, “Integral One-Point Characteristics of Vector Fields in Stochastic Magnetohydrodynamic Flow,” Zh. Éksp. Teor. Fiz. 136, 1194–1208 (2009) [JETP 109, 1032–1044 (2009)].

    Google Scholar 

  19. “Origin of Magnetic Fields in Astrophysics (Turbulent ‘Dynamo’ Mechanisms),” Sov. Phys.-Usp. 15, 159–172 (1972).

  20. E.N. Parker, Cosmical Magnetic Fields (Clarendon Press, Oxford 1979; Mir, Moscow, 1982).

    Google Scholar 

  21. H.K. Moffat, Magnetic Field Generation in Electrically Conducting Fluids (Cambridge Univ. Press, Cambridge, 1978; Mir, Moscow, 1980).

    Google Scholar 

  22. F. Krause, and K. H. Rädler, Mean Field Magnetohydrodynamics and Dynamo Theory (Pergamon Press, New York, 1980; Mir, Moscow, 1984).

    MATH  Google Scholar 

  23. S.I. Vainshtain, Ya.B. Zeldovich, and A.A. Ruzmaikin, Turbulent Dynamo in Astrophysics (Nauka, Moscow, 1980) [in Russian].

    Google Scholar 

  24. Ya.B. Zeldovich, A.A. Ruzmaikin, and D.D. Sokolov, The Almighty Chance (World Scientific, Singapure, 1990).

    Google Scholar 

  25. S. Childress, and A. Gilbert, Stretch Twist Fold: The Fast Dynamo (Springer, Berlin, 1995).

    MATH  Google Scholar 

  26. G. Rüediger, K. Hollerbach, The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory (Wiley, New York, 2004).

    Book  Google Scholar 

  27. R. Balescu, Aspects of Anomalous Transport in Plasmas, Series in Plasma Physics (Institute of Physics Publishing, Bristol and Philadelphia, 2005).

    Book  Google Scholar 

  28. E.T. Vishniac, A. Lazarian, and O. Cho, Problems and Progress in Astrophysical Dynamos (Springer, Berlin 2008).

    Google Scholar 

  29. http://bigpicture.ru/?p=128340.

  30. http://pacificislandparks.com/2010/01/20/more-amazing-lava-lake-photos/.

  31. V. I. Klyatskin, “Statistical Topography and Lyapunov’s Exponents in Dynamic Stochastic Systems,” Uspekhi Fiz. Nauk 178, 419–431 (2008) [Phys. Usp. 51, 395–407 (2008); “Modern methods for the statistical description of dynamical stochastic systems,” 52, 514–519 (2009)].

    Article  Google Scholar 

  32. V.I. Klyatskin, “Clustering and Diffusion of Particles and Tracer Density in Random Hydrodynamic Flows,” Uspekhi Fiz. Nauk 173, 689–710 (2003) [Phys. Usp. 46, 667–688 (2003)].

    Article  Google Scholar 

  33. V.I. Klyatskin, “Stochastic Dynamo in Critical Situation,” Teoret. Mat. Fiz. 172, 415–436 (2012) [Theor. Math. Phys. 172, 1243–1262 (2012)].

    Article  Google Scholar 

  34. V.U. Zavorotny, V.I. Klyatskin, and V.I. Tatarskii, “Strong Fluctuations of the Intensity of Electromagnetic Waves in Randomly Inhomogeneous Media,” Zh. Éksp. Teor. Fiz. 73, 481–497 (1977) [Sov. Phys. JETP 46, 252–260 (1977)].

    ADS  Google Scholar 

  35. A.S. Gurvich, M.A. Kallistratova, and F.E. Martvel’, “An Investigation of Strong Fluctuations of Light Intensity in a Turbulent Medium at a Small Wave Parameter,” Izv. Vyssh. Uchelon. Zaved. Radiofiz. 20, 1020–1031 (1977) [Radiophys. & Quantum Electron. 20, 705–714 (1977)].

    Google Scholar 

  36. Yu.A. Kravtsov, “Propagation of Electromagnetic Waves Through a Turbulent Atmosphere,” Rep. Prog. Phys. 55, 39–112 (1992).

    Article  ADS  Google Scholar 

  37. S.M. Flatté, G.Y. Wang, and J. Martin, “Irradiance Variance of Optical Waves through Atmospheric Turbulence by Numerical Simulation and Comparison with Experiment,” JOSA A10, 2363–2370 (1993).

    Article  ADS  Google Scholar 

  38. S.M. Flatté, C. Bracher, and G.Y. Wang, “Probability-Density Functions of Irradiance for Waves in Atmospheric Turbulence Calculated by Numerical Simulation,” JOSA A11, 2080–2092 (1994).

    Article  ADS  Google Scholar 

  39. G.R. Ivanittskii, “21st Century: What is Life from the Perspective of Physics?” Uspekhi Fiz. Nauk 180, 337–369 (2010) [Phys. Usp. 53, 327–356 (2010)].

    Article  Google Scholar 

  40. V.I. Klyatskin, “Spatial Structures Can Form in Stochastic Dynamics Systems due to Near-Zero-Probability Events “(comment on “21st Century: What Is Life from the Perspective of Physics?” by G. R. Ivanitskii)” Uspekhi Fiz. Nauk 182, 1235–1237 (2012) [in Russian].

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klyatskin, V.I. On the statistical theory of spatial structure formation in random media. Russ. J. Math. Phys. 20, 295–314 (2013). https://doi.org/10.1134/S1061920813030059

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920813030059

Keywords

Navigation