Skip to main content
Log in

Mathematical conception of “Phenomenological” equilibrium thermodynamics

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

In the paper, the principal aspects of the mathematical theory of equilibrium thermodynamics are distinguished. It is proved that the points of degeneration of a Bose gas of fractal dimension in the momentum space coincide with critical points or real gases, whereas the jumps of critical indices and the Maxwell rule are related to the tunnel generalization of thermodynamics. Semiclassical methods are considered for the tunnel generalization of thermodynamics and also for the second and ultrasecond quantization (operators of creation and annihilation of pairs). To every pure gas there corresponds a new critical point of the limit negative pressure below which the liquid passes to a dispersed state (a foam). Relations for critical points of a homogeneous mixture of pure gases are given in dependence on the concentration of gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Leontovich, Introduction to Thermodynamics (GITTL, Moscow-Leningrad, 1950) [in Russian].

    Google Scholar 

  2. H. Poincaré, La science et l’hypothèse (Flammarion, Paris, 1903) [On Science (in Russian) (Nauka, Moscow, 1983)].

    Google Scholar 

  3. H. Temperley, “Statistical Mechanics and the Partition of Numbers: I. The Transition of Liquid Helium,” Proc. Roy. Soc. London Ser. A 199(1058), 361–375 (1949).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. B. Widom, “Surface Tension and Molecular Correlations near the Critical Point,” J. Chem. Phys. 43(11), 3892–3897 (1965).

    Article  ADS  Google Scholar 

  5. L. P. Kadanoff, “Scaling Laws for Ising Models near T c,” Physics 2, 263–272 (1966).

    Google Scholar 

  6. K. G. Wilson, “Feynman-Graph Extension for Critical Exponents,” Phys. Rev. Lett. 28(9), 548–551 (1972).

    Article  ADS  Google Scholar 

  7. D. Yu. Ivanov, “Critical Phenomena in Pure Liquids,” Vestnik SIBGUTI 3, 94–104 (2009) [in Russian].

    Google Scholar 

  8. D. Yu. Ivanov, Critical Behavior of Non-Ideal Systems (Wiley-VCH, 2008).

  9. L. D. Landau and E. M. Lifshits, Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1964; Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  10. Yu. G. Pavlenko, Lectures on Theoretical Mechanics (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  11. B. D. Summ, Fundamentals of Colloid Chemistry (Izd. Tsentr “Akademiya,” Moscow, 2007) [in Russian].

    Google Scholar 

  12. E. A. Guggenheim, “The Principle of Corresponding States,” J. Chem. Phys. 13, 253–261 (1945).

    Article  ADS  Google Scholar 

  13. V. P. Maslov, “Fluid Thermodynamics, an Energy Redistribution Law, a Two-Dimensional Condensate, and the T-Mapping,” Teoret. Mat. Fiz. 161(3), 420–458 (2009) [Theoret. Math. Phys. 161 (3), 1681–1713 (2009)].

    MathSciNet  Google Scholar 

  14. V. P. Maslov, “On Refinement of Several Physical Notions and Solution of the Problem of Fluids for Supercritical States,” arXiv:0912.5011v2 [cond-mat.stat-mech].

  15. E. M. Apfelbaum and V. S. Vorob’ev, “The Confirmation of the Critical Point-Zeno-Line Similarity Set from the Numerical Modeling Data for Different Interatomic Potentials,” J. Chem. Phys. 130, 214111, 1–10 (2009).

    Article  Google Scholar 

  16. A. M. Vershik, “Statistical Mechanics of Combinatorial Partitions, and Their Limit Shapes,” Funktsional. Anal. i Prilozhen. 30(2), 19–39 (1996) [Functional Anal. Appl. 30 (2), 90–105 (1996)].

    Article  MathSciNet  Google Scholar 

  17. V. P. Maslov and V. E. Nazaikinskii, “On the Distribution of Integer Random Variables Related by a Certain Linear Inequality: I,” Mat. Zametki 83(2), 232–263 (2008) [Math. Notes 83 (2), 211–237 (2008)].

    MathSciNet  Google Scholar 

  18. V. P. Maslov and V. E. Nazaikinskii, “On the Distribution of Integer Random Variables Related by a Certain Linear Inequality: II,” Mat. Zametki 83(3), 381–401 (2008) [Math. Notes 83 (3), 345–363 (2008)].

    MathSciNet  Google Scholar 

  19. E. M. Apfelbaum, V. S. Vorob’ev, “Correspondence between of the Ideal Bose Gas in a Space of Fractional Dimension and a Dense Nonideal Gas According to Maslov Scheme,” Russ. J. Math. Phys. 18(1), 19–25 (2011).

    MathSciNet  Google Scholar 

  20. L. D. Landau and E. M. Lifshits, Quantum Mechanics (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  21. I. Fisher, The Purchasing Power of Money: Its Determination and Relation to Credit, Interest and Crises (Izd-vo Delo, Moscow, 2001).

    Google Scholar 

  22. V. P. Maslov, Zeno-Line, Binodal, T — ρ Diagram and Clusters as a New Bose-Condensate Bases on New Global Distributions in Number Theory, arXiv 1007.4182v1 [math-ph], 23 July 2010.

  23. V. P. Maslov, “A New Approach to Probability Theory and Thermodynamics,” Math. Notes 90(1), 125–135 (2011).

    Article  MATH  Google Scholar 

  24. V. P. Maslov, “Comparison of the Supercritical States of Fluids for Imperfect Gases and for a Fractal Ideal Gas,” Math. Notes 87(3), 303–310 (2010).

    Article  MathSciNet  Google Scholar 

  25. V. P. Maslov, “Tunnel Quantization of Thermodynamics and Critical Exponents,” Math. Notes 90(4), 533–547 (2011).

    Article  Google Scholar 

  26. V. P. Maslov, “Analytic Continuation of Asymptotic Formulas and Axiomatics of thermodynamics and quasithermodynamics,” Funktsional. Anal. i Prilozhen. 28(4), 28–41 (1994).

    MathSciNet  Google Scholar 

  27. V. P. Maslov, “Geometric “Quantization” of Thermodynamics, and Statistical Corrections at Critical Points,” Teoret. Mat. Fiz. 101(3), 433–441 (1994) [Theoret. Math. Phys. 101 (3), 1466–1472 (1995)].

    MathSciNet  Google Scholar 

  28. V. P. Maslov, “Generalization of Gibbs’ Axiom, Geometric Classification of Phase Transitions, and the Asymptotics at Critical Points,” Dokl. Akad. Nauk 340(2), 169–171 (1995).

    Google Scholar 

  29. V. P. Maslov, “On a Class of Lagrangian Manifolds Corresponding to Variational Problems and Problems of Control Theory and Thermodynamics,” Funktsional. Anal. i Prilozhen. 32(2), 89–91 (1998).

    Article  MathSciNet  Google Scholar 

  30. V. P. Maslov, Quantization of Thermodynamics and Ultrasecond Quantization (Inst. Kompyuternykh Issledovanii, Moscow, 2001) [in Russian].

    Google Scholar 

  31. V. P. Maslov, Perturbation Theory and Asymptotical Methods (Izd. Moskov. Univ., Moscow, 1965; Dunod, Paris, 1972) [in Russian and French].

    Google Scholar 

  32. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965 (Dover, Mineola, 2010); Mir, Moscow, 1968).

    MATH  Google Scholar 

  33. V. P. Maslov and P. P. Mosolov, Nonlinear Wave Equations Perturbed by Viscous Terms (Walter de Gruyter, Berlin, 2000).

    Book  MATH  Google Scholar 

  34. V. P. Maslov, “Nonstandard Characteristics in Asymptotic Problems,” Proceedings of the XIX International Mathematical Congress (Warsaw, 1983) [Polish Sci. Press, Warsaw, 1984].

    Google Scholar 

  35. V. P. Maslov, “Nonstandard Characteristics in Asymptotic Problems,” Uspekhi Mat. Nauk 38(6), 3–36 (1983) [Russian Math. Surveys 38 (6), 1–42 (1983)].

    ADS  MathSciNet  Google Scholar 

  36. M. S. Green, “Introduction,” Proc. Conference on phenomena in the neighborhood of critical points, ed. by M. S. Green & J. V. Sengers (NBS Misc. Publ. 273, Washington 1966), pp. ix–xi.

  37. R. Balescu, Equilibrium and Nonequilibrium Statistical Mechanics, A Wiley-Interscience Publication (John Wiley and Sons, New York-London-Sydney-Toronto, 1975; Mir, Moscow, 1978), Vol. 1.

    MATH  Google Scholar 

  38. V. P. Maslov, “Number-Theoretic Internal Energy for a Gas Mixture”, Russ. J. Math. Phys. 18(2), 163–175 (2011).

    Article  MathSciNet  Google Scholar 

  39. B. van-der-Pol and H. Bremmer, Operational Calculus, Based on the Two-Sided Laplace Integral (Cambridge, at the University Press, 1950; Izd. Inostr. Lit., Moscow, 1952).

  40. V. P. Maslov and O. Yu. Shvedov, The Complex Germ Method in Many-Particle Problems and in Quantum Field Theory (Editorial URSS, Moscow, 2000) [in Russian].

    Google Scholar 

  41. V. P. Maslov and S. É. Tariverdiev, “Asymptotics of the Kolmogorov-Feller Equation for a System with a Large Number of Particles,” in Itogi Nauki Tekh. Ser. Probab. Theor. Mat. Statist. Theor. Kibern. (VINITI, Moscow, 1982), Vol. 19, pp. 85–120 [in Russian]..

    Google Scholar 

  42. V. P. Maslov, “Solution of the Gibbs Paradox in the Framework of Classical Mechanics (Statistical Physics) and Crystallization of the Gas C60,” Mat. Zametki 83(5), 787–791 (2008) [Math. Notes 83 (5), 716–722 (2008)].

    MathSciNet  Google Scholar 

  43. M. Schönberg, “Application of Second Quantization Methods to the Classical Statistical Mechanics. I,” Nuovo Cimento Soc. Ital. Fis. B 9(12), 1139–1182, (1952).

    Article  MATH  Google Scholar 

  44. M. Schönberg, “Application of Second Quantization Methods to the Classical Statistical Mechanics. II,” Nuovo Cimento Soc. Ital. Fis. B 10(4), 419–472, (1953).

    Article  MATH  Google Scholar 

  45. J. M. Calo, “Dimer Formation in Supersonic Water Vapor Molecular Beams,” J. Chem. Phys. 62(12), 4904–4910, (1975).

    Article  ADS  Google Scholar 

  46. V. P. Maslov, “On the Superfluidity of Classical Liquid in Nanotubes. I. Case of Even Number of Neutrons,” Russ. J. Math. Phys. 14(3), 304–318 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  47. V. P. Maslov, “On the Superfluidity of Classical Liquid in Nanotubes. II. Case of Odd Number of Neutrons,” Russ. J. Math. Phys. 14(4), 401–412 (2007).

    Article  Google Scholar 

  48. V. P. Maslov, “On the Superfluidity of Classical Liquid in Nanotubes. III,” Russ. J. Math. Phys. 15(1), 61–65 (2008).

    Google Scholar 

  49. G. Hummer, J. Rasaiah, and J. Noworyta, “Water Conduction Through the Hydrophobic Channel of a Carbon Nanotube,” Nature 414(8), 188–190 (2001).

    Article  ADS  Google Scholar 

  50. S. Joseph and N. Aluru, “Why are Carbon Nanotubes Fast Transporters of Water?” Nanoletters 8(2), 452–458 (2008).

    Article  ADS  Google Scholar 

  51. A. Noy, H. Park, F. Fornasiero, et al., “Nanofluidics in Carbon Nanotubes,” Nanotoday 2(6), 22–29 (2007).

    Google Scholar 

  52. I. A. Molotkov, “Maslov Distribution and Formulas for the Entropy,” Russ. J. Math. Phys. 17(4), 476–485 (2010).

    Article  MathSciNet  Google Scholar 

  53. K. I. Shmulovich and L. Mercury, “Geochemical Phenomena at Negative Pressures,” Electronic Scientific Information Journal “Herald of the Department of Earth Sciences RAS” 1(24), 1–3 (2006).

    Google Scholar 

  54. V. P. Maslov, “Theory of Chaos and Its Application to the Crisis of Debts and the Origin of the Inflation,” Russ. J. Math. Phys. 16(1), 103–120 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  55. V. V. Sychev, A. A. Vasserman, A. D. Kozlov, G. A. Spiridonov, and V. A. Tsymarnyi, Thermodynamic Properties of Air (Izd-vo Standartov, Moscow, 1978; Hemisphere Publishing Corp. (National Standard Reference Data Service of the USSR. Volume 6), Washington, DC, 1987).

    Google Scholar 

  56. A. A. Vlasov, “On the Vibrational Properties of an Electron Gas,” Zh. Èksper. Teoret. Fiz. 8, 291–318 (1938) [Sov. Phys. Usp. 10, 721–733 (1968)].

    Google Scholar 

  57. W. Wagner, N. Kurzeja, and B. Pieperbeck, “The Thermal Behaviour of Fluid Substances in the Critical Region — Experiences from Recent (p, ρ, T) Measurements on SF 6 with a Multi-Cell Apparatus,” Fluid Phase Equilibria 79, 151–174 (1992).

    Article  Google Scholar 

  58. N. Kurzeja, Th. Tielkes, and W. Wagner, “The Nearly Classical Behavior of a Pure Fluid on the Critical Isochore Very Near the Critical Point under Influence of Gravity,” Int. J. Thermophysics 20(2), 531–561 (1999).

    Article  Google Scholar 

  59. V. P. Maslov, “Taking into Account the Interaction between Particles in a new Theory of Nucleation, Quasiparticles, Quantization of Vortices, and the Two-Particle Distribution Function,” Mat. Zametki 83(6), 864–879 (2008) [Math. Notes 83 (5-6), 790-803 (2008)].

    Google Scholar 

  60. I. A. Kvasnikov, Thermodynamics and Statistical Physics: Theory of Equilibrium Systems (URSS, Moscow, 2002), Vol. 2 [in Russian].

    Google Scholar 

  61. http://en.wikipedia.org/wiki/Polylogarithm.

  62. L. Lewin, Polylogarithms and Associated Functions (North-Holland Publishing Co., New York-Amsterdam, 1981).

    MATH  Google Scholar 

  63. T. L. Hill, Statistical Mechanics: Principles and Selected Applications (McGraw-Hill Book Co., Inc., New York-Toronto-London, 1956; IL, Moscow, 1960).

    MATH  Google Scholar 

  64. S M Stishov, “The Thermodynamics of Melting of Simple Substances,” Uspekhi Fiz. Nauk 114, 3–40 (1974) [Sov. Phys. Usp. 18, 625–643 (1975)].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maslov, V.P. Mathematical conception of “Phenomenological” equilibrium thermodynamics. Russ. J. Math. Phys. 18, 440–464 (2011). https://doi.org/10.1134/S1061920811040066

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920811040066

Keywords

Navigation