Skip to main content
Log in

Feynman formulas and path integrals for some evolution semigroups related to τ-quantization

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

This note is devoted to Feynman formulas (i.e., representations of semigroups by limits of n-fold iterated integrals as n → ∞) and their connections with phase space Feynman path integrals. Some pseudodifferential operators corresponding to different types of quantization of a quadratic Hamiltonian function are considered. Lagrangian and Hamiltonian Feynman formulas for semigroups generated by these operators are obtained. Further, a construction of Hamiltonian (phase space) Feynman path integrals is introduced. Due to this construction, the Hamiltonian Feynman formulas obtained here and in our previous papers do coincide with Hamiltonian Feynman path integrals. This connects phase space Feynman path integrals with some integrals with respect to probability measures. These connections enable us to make a contribution to the theory of phase space Feynman path integrals, to prove the existence of some of these integrals, and to study their properties by means of stochastic analysis. The Feynman path integrals thus obtained are different for different types of quantization. This makes it possible to distinguish the process of quantization in the language of Feynman path integrals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Albeverio, G. Guatteri, and S. Mazzucchi, “Phase Space Feynman Path Integrals,” J. Math. Phys. 43(6), 2847–2857 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  2. S. A. Albeverio, R. J. Høegh-Krohn, and S. Mazzucchi, “Mathematical Theory of Feynman Path Integrals. An Introduction,” Lect. Notes Math. 523 (Springer-Verlag, Berlin-Heidelberg-New York, 2008).

    Google Scholar 

  3. F. A. Berezin, “Feynman Path Integrals in a Phase Space,” Usp. Fiz. Nauk 23(11), 763–788 (1980).

    Google Scholar 

  4. W. Bock and M. Grothaus, “A White Noise Approach to Phase Space Feynman Path Integrals,” accepted for publication in Theory of Probability and Mathematical Statistics in honor of Anatolij Skorokhod, Volodymyr Korolyuk, and Igor Kovalenko (2011).

  5. B. Böttcher, “Approximation of Feller Semigroups with Unbounded Symbols,” Electron. Comm. Probab. 16, 545–555 (2011).

    Google Scholar 

  6. B. Böttcher and R. L. Schilling, “Approximation of Feller Processes by Markov Chains with Lévy Increments,” Stoch. Dyn. 9, 71–80 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  7. Ya. A. Butko, “Feynman Formulas and Functional Integrals for Diffusion with Drift in a Domain on a Manifold,” Mat. Zametki 83(3), 333–349 (2008) [Math. Notes 83 (3–4), 301–316 (2008)].

    MathSciNet  Google Scholar 

  8. Ya. A. Butko, “Function Integrals Corresponding to a Solution of the Cauchy-Dirichlet Problem for the Heat Equation in a Domain of a Riemannian Manifold,” J. Math. Sci. 151(1), 2629–2638 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  9. Ya. Butko, M. Grothaus, and O. G. Smolyanov, “Feynman Formula for a Class of Second-Order Parabolic Equations in a Bounded Domain,” Dokl. Math. 78(1), 590–595 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  10. Ya. Butko, M. Grothaus, and O. G. Smolyanov, “Lagrangian Feynman Formulae for Second Order Parabolic Equations in Bounded and Unbounded Domains,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13(3), 377–392 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  11. Ya. Butko, R. L. Schilling, and O. G. Smolyanov, “Feynman Formulae for Feller Semigroups,” Dokl. Math. 82(2), 679–683 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  12. Ya. A. Butko, R. L. Schilling, and O. G. Smolyanov, “Hamiltonian Feynman-Kac and Feynman Formulae for Dynamics of Particles with Position-Dependent Mass,” Int. J. Theoret. Phys. 50, 2009–2018 (2010).

    Article  MathSciNet  Google Scholar 

  13. Ya. A. Butko, R. L. Schilling, and O. G. Smolyanov, “Lagrangian and Hamiltonian Feynman Formulae for Some Feller Semigroups and Their Perturbations,” Infin. Dimens. Anal. Quantum Probab. Relat. Top., to appear (2011).

  14. P. Cartier and C. De Witt-Morette, Functional Integration: Action and Symmetries (Cambridge: Uni. Press., 2006).

    Book  MATH  Google Scholar 

  15. P. Chernoff, “Product Formulas, Nonlinear Semigroups and Addition of Unbounded Operators,” Mem. Amer. Math. Soc. 140, (1974).

  16. Ph. Courrège, “Sur la forme intégro-différentielle des opérateurs de C k dans C satisfaisant au principe du maximum,” Séminaire Brelot-Choquet-Deny (Théorie du potentiel) 10(1), exp. no. 2, 1–38 (1965/66).

    Google Scholar 

  17. I. Daubechies and J. R. Klauder, “Quantum-Mechanical Path Integrals with Wiener Measure for All Polynomial Hamiltonians. II,” J. Math. Phys. 26(9), 2239–2256 (1985).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. C. De Witt-Morette, A. Maheshwari, and B. Nelson, “Path Integration in Non-Relativistic Quantum Mechanics,” Phys. Rep. 50(5), 255–372 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  19. R. P. Feynman, “Space-Time Approach to Nonrelativistic Quantum Mechanics,” Rev. Mod. Phys. 20, 367–387 (1948).

    Article  ADS  MathSciNet  Google Scholar 

  20. R. P. Feynman, “An Operation Calculus Having Applications in Quantum Electrodynamics,” Phys. Rev. (2) 84, 108–128 (1951).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. M. Gadella and O. G. Smolyanov, “Feynman Formulas for Particles with Position-Dependent Mass,” Dokl. Math. 77(1), 120–123 (2007).

    Article  MathSciNet  Google Scholar 

  22. C. Garrod, “Hamiltonian Path Integral Methods,” Rev. Mod. Phys. 38(3), 483–494 (1966).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  23. I. L. Hwang, “The L 2-Boundness of Pseudodifferential Operators,” Trans. Amer. Math. Soc. 302(1), 55–76 (1987).

    MATH  MathSciNet  Google Scholar 

  24. W. Ichinose, “The Phase Space Feynman Path Integral with Gauge Invariance and Its Convergence,” Rev. Math. Phys. 12, 1451–1463 (2002).

    MathSciNet  Google Scholar 

  25. T. Ichinose and H. Tamura, “Imaginary-Time Integral for a Relativistic Spinless Particle in an Electromagnetic Field,” Commun. Math. Phys. 105, 239–257 (1986).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. N. Jacob, “Pseudo-Differential Operators and Markov Processes,” Imperial College Press 1–3, (2001).

  27. N. Jacob and R. L. Schilling, “Lévy-type Processes and Pseudo Differential Operators,” O. Barndorff- Nielsen, T. Mikosch, and S. Resnick (eds.), “Lévy Processes: Theory and Applications” (Birkhäuser, Boston, 2001), pp.139–167.

    Chapter  Google Scholar 

  28. H. Kitada and H. Kumano-go, “A Family of Fourier Integral Operators and the Fundamental Solution for a Schrödinger Equation,” Osaka J. Math. 18, 291–360 (1981).

    MATH  MathSciNet  Google Scholar 

  29. N. Kumano-go, “A Hamiltonian Path Integral for a Degenerate Parabolic Pseudo-Differential Operator,” J. Math. Sci. Univ. Tokyo 3(1), 57–72 (1996).

    MATH  MathSciNet  Google Scholar 

  30. N. Kumano-go and D. Fujiwara, “Phase Space Feynman Path Integrals via Piecewise Bicharacteristic Paths and Their Semiclassical Approximations,” Bull. Sci. Math. 132, 313–357 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  31. I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus (Springer, 1991).

  32. E. Nelson, “Feynman Integrals and the Schrödinger Equation,” J. Math. Phys. 3, 332–343 (1964).

    Article  ADS  Google Scholar 

  33. O. O. Obrezkov, “The Proof of the Feynman-Kac Formula for Heat Equation on a Compact Riemannian Manifold,” Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6(2), 311–320 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  34. O. O. Obrezkov, O. G. Smolyanov, and A. Truman, “The Generalized Chernoff Theorem and Randomized Feynman Formula,” Dokl. Math. 71(1), 105–110 (2005).

    Google Scholar 

  35. V. G. Sakbaev and O. G. Smolyanov, “Dynamics of a Quantum Particle with Discontinuous Position-Dependent Mass,” Dokl. Math. 82(1), 630–634 (2010).

    Article  MATH  Google Scholar 

  36. K. Sato, Levy Processes and Infinitely Divisible Distributions (Cambridge Univ. Press., 1999).

  37. R. L. Schilling and A. Schnurr, “The Symbol Associated with the Solution of a Stochastic Differential Equation,” Electron. J. Probab. 15, 1369–1393 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  38. O. G. Smolyanov, “Feynman Type Formulae for Quantum Evolution and Diffusion on Manifolds and Graphs,” Quant. Bio-Informatics, World Sci. 3, 337–347 (2010).

    Google Scholar 

  39. O. G. Smolyanov and N. N. Shamarov, “Feynman and Feynman-Kac Formulae for Evolution Equations with Vladimirov Operator,” Dokl. Math. 77, 345–349 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  40. O. G. Smolyanov and N. N. Shamarov, “Hamiltonian Feynman Integrals for Equations with the Vladimirov Operator,” Dokl. Math. 81(2), 209–214 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  41. O. G. Smolyanov and E. T. Shavgulidze, Path Integrals [in Russian] (Moskov. Gos. Univ., Moscow, 1990).

    Google Scholar 

  42. O. G. Smolyanov and E. T. Shavgulidze, “The Support of Symplectic Feynman Measure and Uncertainty Principle,” Dokl. Acad. Nauk SSSR 323(6), 1038–1042 (1992) [in Russian].

    MathSciNet  Google Scholar 

  43. O. G. Smolyanov, A. G. Tokarev, and A. Truman, “Hamiltonian Feynman Path Integrals via the Chernoff Formula,” J. Math. Phys. 43(10), 5161–5171 (2002).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  44. O. G. Smolyanov, H. V. Weizsäcker and O. Wittich, “Diffusion on Compact Riemannian Manifolds, and Surface Measures,” Dokl. Math. 61, 230–234 (2000).

    Google Scholar 

  45. O. G. Smolyanov, H. V. Weizsäcker, and O. Wittich, “Brownian Motion on a Manifold as Limit of Stepwise Conditioned Standard Brownian Motions. In: Stochastic Processes,” Physics and Geometry: New Interplays. II: A Volume in Honor of Sergio Albeverio. Ser. Conference Proceedings. Canadian Math. Society. Providence: AMS. 29, 589–602 (2002).

    Google Scholar 

  46. O. G. Smolyanov, H. V. Weizsäcker, and O. Wittich, “Chernoff’s Theorem and the Construction of Semigroups,” Evolution Equations: Applications to Physics, Industry, Life Sciences and Economics (Proc. 7th Intern. Conf. Evolution Eq. and Appl., Levico Terme, Italy, Oct./Nov. 2000) Prog. Nonlinear Differ. Eq. Appl. 55 (Birkhäuser, Basel, 2003), pp. 349–358.

    Google Scholar 

  47. O. G. Smolyanov, H. V. Weizsäcker, and O. Wittich, “Surface Measures and Initial Boundary Value Problems Generated by Diffusions with Drift,” Dokl. Math. 76(1), 606–610 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  48. O. G. Smolyanov, H. V. Weizsäcker, and O. Wittich, “Chernoff’s Theorem and Discrete Time Approximations of Brownian Motion on Manifolds,” Potential Anal. 26(1), 1–29 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  49. I. V. Telyatnikov, “Smolyanov-Weizsäcker Surface Measures Generated by Diffusions on the Set of Trajectories in Riemannian Manifolds,” IDAQP 11(1), 21–31 (2008).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Böttcher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böttcher, B., Butko, Y.A., Schilling, R.L. et al. Feynman formulas and path integrals for some evolution semigroups related to τ-quantization. Russ. J. Math. Phys. 18, 387–399 (2011). https://doi.org/10.1134/S1061920811040017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920811040017

Keywords

Navigation