Skip to main content
Log in

Homological equations for tensor fields and periodic averaging

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

Homological equations of tensor type associated to periodic flows on a manifold are studied. The Cushman intrinsic formula [4] is generalized to the case of multivector fields and differential forms. Some applications to normal forms and the averaging method for perturbed Hamiltonian systems on slow-fast phase spaces are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, V. V. Kozlov, and A. I. Neishtadt, Mathematical Aspects of Classical and Celestial Mechanics, Encyclopedia of Math. Sci., 3, Dynamical Systems III (Springer-Verlag, Berlin-New York, 1988).

    Google Scholar 

  2. R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, Tensor Analysis, and Applications, 2nd. ed. (Springer-Verlag, New York-Berlin, 1988).

    Book  MATH  Google Scholar 

  3. L. Bates and J. Sniatycki, “On the Period-Energy Relation,” Proc. Amer. Math. Soc. 114(3), 877–878 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Cushman, “Normal Form for Hamiltonian Vectorfields with Periodic flow,” in: Differential Geometric Methods in Mathematical Physics (Jerusalem, 1982) (Reidel, Dordrecht-Boston, Mass., 1984), pp. 125–144.

    Google Scholar 

  5. G. Dávila Rascón and Yu. Vorobiev, “A Hamiltonian Approach for Skew-Product Dynamical Systems,” Russ. J. Math. Phys. 15(1), 35–44 (2008).

    MathSciNet  MATH  Google Scholar 

  6. G. Dávila Rascón and Yu. Vorobiev, “The First Step Normalization for Hamiltonian Systems with Two Degrees of Freedom over Orbit Cylinders,” Electronic J. of Diff. Equations, 2009(54), 1–17 (2009).

    Google Scholar 

  7. A. Deprit, “Canonical Transformation Depending on a Small Parameter,” Celestial Mech. 72, 173–179 (1969).

    Google Scholar 

  8. W. Gordon, “On the Relation Between Period and Energy in Periodic Dynamical Systems,” J. Math. Mech. 19, 111–114 (1969).

    MathSciNet  MATH  Google Scholar 

  9. J. Henrard, “On a Perturbation Theory Using Lie Transforms,” Celestial Mech. 3, 107–120 (1970).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. V. V. Kozlov, Symmetries, Topology, and Resonances in Hamiltonian Mechanics (Springer-Verlag, Berlin, 1996).

    Google Scholar 

  11. M. V. Karasev and Yu. M. Vorobjev, “Adapted Connections, Hamilton Dynamics, Geometric Phases, and Quantization over Isotropic Submanifolds,” Amer. Math. Soc. Transl. (2) 187, 203–326 (1998).

    MathSciNet  Google Scholar 

  12. J. Marsden, R. Montgomery, and T. Ratiu, “Reduction, Symmetry, and Phases in Mechanics,” Mem. Amer. Math. Soc. 88(436), 1–110 (1990).

    MathSciNet  Google Scholar 

  13. R. Montgomery, “The Connection whose Holonomy is the Classical Adiabatic Angles of Hannay and Berry and Its Generalization to the Nonintegrable Case,” Commun. Math. Phys. 120(2), 269–294 (1988).

    Article  ADS  MATH  Google Scholar 

  14. K. Nakagawa and H. Yoshida, “A Necessary Condition for the Integrability of Homogeneous Hamiltonian Systems with Two Degrees of Freedom,” J. Phys. A 34(11), 2137–2148 (2001).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. A. Neishtadt, “Averaging Method and Adiabatic Invariants,” in: Hamiltonian dynamical systems and applications (Springer, Dordrecht, 2008), pp. 53–66.

    Chapter  Google Scholar 

  16. J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods in Nonlinear Dynamical Systems (Springer, New York, 2007).

    MATH  Google Scholar 

  17. Yu. Vorobiev, “The Averaging in Hamiltonian Systems on Slow-Fast Phase Spaces with S1-Symmetry,” Physics of Atomic Nuclei 74(7), 1–5 (2011).

    Google Scholar 

  18. Yu. M. Vorobjev, “Quantum Algebras and Poisson Geometry in Mathematical Physics,” Amer. Math. Soc. Transl. (2) 216, 137–239 (AMS, Providence, RI, 2005).

    Google Scholar 

  19. H. Yoshida, “A Type of Second Order Linear Ordinary Differential Equations with Periodic Coefficients for Which the Characteristic Exponents Have Exact Expressions,” Celestial Mech. 32(1), 73–86 (1984).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avendaño Camacho, M., Vorobiev, Y.M. Homological equations for tensor fields and periodic averaging. Russ. J. Math. Phys. 18, 243–257 (2011). https://doi.org/10.1134/S1061920811030010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920811030010

Keywords

Navigation