Skip to main content
Log in

Experimental mathematics: Dependence of the stability properties of a two-dimensional model of the Atlantic ocean circulation on the boundary conditions

  • Conference Proceedings
  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze the stability of an idealized model of the Atlantic meridional overturning circulation by adopting a two-dimensional Boussinesq model. We define a two-dimensional parameter space descriptive of the freshwater forcing of the system and determine a bounded region on which multiple equilibria are realized. We also analyze the dependence of the response of the system to finite amplitude perturbations in the boundary conditions with different rates of change. It is possible to define a robust separation between slow and fast regimes of forcing. The critical rate of increase is similar to the ratio of the typical intensity of the hydrological cycle to the advective time scale of the system. If the change of the forcing is faster (slower) than the critical rate, the system responds as to instantaneous (adiabatic) changes of the same amplitude. Since the advective time scale is proportional to the square root of the vertical diffusivity, our analysis supports the conjecture that the efficiency of vertical mixing might be critical in determining the response of the ocean circulation to transient climatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Arakawa, “Computational Design for Long-Term Numerical Integration of the Equations of Fluid Motion: Two-Dimensional Incompressible Flow. Part I,” J. Comput. Phys. 1, 119–143 (1966).

    Article  MATH  Google Scholar 

  2. A. Baumgartner and E. Reichel, The World Water Balance (Elsevier, New York, 1975).

    Google Scholar 

  3. E. A. Boyle and L. Keigwin, “North Atlantic Thermohaline Circulation during the Past 20000 Years Linked to High-Latitude Surface Temperature,” Nature 330, 35–40 (1987).

    Article  ADS  Google Scholar 

  4. W. S. Broecker, “Massive Iceberg Discharges as Triggers for Global Climate Change,” Nature 372, 421–424 (1994).

    Article  ADS  Google Scholar 

  5. F. Bryan, “High-Latitude Salinity Effects and Interhemispheric Thermohaline Circulations,” Nature 323, 301–304 (1986).

    Article  ADS  Google Scholar 

  6. F. Bryan, “Parameter Sensitivity of Primitive Equation Ocean General Circulation Models,” J. Phys. Oceanogr. 17, 970–985 (1987).

    Article  Google Scholar 

  7. P. Cessi and W. R. Young, “Multiple Equilibria in Two-Dimensional Thermohaline Flow,” J. Fluid Mech. 241, 291–309 (1992).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. F. Dalan, P. H. Stone, I. Kamenkovich, and J. Scott, “Sensitivity of the Ocean’s Climate to Diapycnal Diffusivity in EMIC. Part I: Equilibrium State,” J. Climate 18, 2460–2481 (2005).

    Article  ADS  Google Scholar 

  9. H. A. Dijkstra and J. Molemaker, “Symmetry Breaking and Overturning Oscillations in the Thermohaline Driven Flows,” J. Fluid Mech. 331, 169–198 (1997).

    Article  MATH  ADS  Google Scholar 

  10. H. A. Dijkstra, Nonlinear Physical Oceanography (Kluwer, Dordrecht, 2001).

    Google Scholar 

  11. A. Ganopolski and S. Rahmstorf, “Abrupt Glacial Climate Changes due to Stochastic Resonance,” Phys. Rev. Lett. 88, 038501 (2002).

    Google Scholar 

  12. M. C. Gregg, T. B. Sanford, and D. P. Winkel, “Reduced Mixing from the Breaking of Internal Waves in Equatorial Waters,” Nature 422, 513–515 (2003).

    Article  ADS  Google Scholar 

  13. R. T. Knutti, T. W. Stocker, and D. G. Wright, “The Effects of Subgridscale Parameterizations in a Zonally Averaged Ocean Model,” J. Phys. Oceanogr. 54, 2738–2752 (2000).

    Article  Google Scholar 

  14. V. Lucarini and P. H. Stone, “Thermohaline Circulation Stability: a Box Model Study — Part I: Uncoupled Model,” J. Climate 18, 501–513 (2005).

    Article  ADS  Google Scholar 

  15. V. Lucarini and P. H. Stone, “Thermohaline Circulation Stability: a Box Model Study — Part II: Coupled Model,” J. Climate 18, 514–529 (2005).

    Article  ADS  Google Scholar 

  16. V. Lucarini, S. Calmanti, and V. Artale, “Destabilization of the Thermohaline Circulation by Transient Perturbations to the Hydrological Cycle,” Clim. Dyn. 24, 253–262 (2005).

    Article  Google Scholar 

  17. S. Manabe and R. J. Stouffer, “The Role of Thermohaline Circulation in Climate,” Tellus 51A–B, 91–109 (1999).

    ADS  Google Scholar 

  18. S. Manabe and R. J. Stouffer, “Are Two Modes of Thermohaline Circulation Stable?” Tellus 51A, 400–411.

  19. J. Marotzke, “Analysis of Thermohaline Feedbacks,” in Decadal Climate Variability: Dynamics and Predictability, Ed. by D. L. T. Anderson and J. Willebrand (Springer, Berlin, 1996), pp. 333–378.

    Google Scholar 

  20. D. W. Peaceman and H. H. Rachford, “The Numerical Solution of Parabolic and Elliptic Differential Equations,” J. Soc. Ind. Appl. Math. 3, 28–41 (1955).

    Article  MATH  MathSciNet  Google Scholar 

  21. S. Rahmstorf, “Bifurcations of the Atlantic Thermohaline Circulation in Response to Changes in the Hydrological Cycle,” Nature 378, 145–149 (1995).

    Article  ADS  Google Scholar 

  22. S. Rahmstorf, “On the Freshwater Forcing and Transport of the Atlantic Thermohaline Circulation,” Clim. Dyn. 12, 799–811 (1996).

    Article  Google Scholar 

  23. S. Rahmstorf, “Ocean Circulation and Climate during the Past 120,000 Years,” Nature 419, 207.

  24. A. Schmittner and T. F. Stocker, “The Stability of the Thermohaline Circulation in Global Warming Experiments,” J. Climate 12, 1117–1127 (1999).

    Article  ADS  Google Scholar 

  25. P. H. Stone and Y. P. Krasovskiy, “Stability of the Interhemispheric Thermohaline Circulation in a Coupled Box Model,” Dyn. Atmos. Oceans 29, 415–435 (1999).

    Article  Google Scholar 

  26. R. J. Stouffer and S. Manabe, “Response of a Coupled Ocean-Atmosphere Model to Increasing Atmospheric Carbon Dioxide: Sensitivity to the Rate of Increase,” J. Climate 12, 2224–2237 (1999).

    Article  ADS  Google Scholar 

  27. L. Talley, “Shallow, Intermediate, and Deep Overturning Components of the Global Heat Budget,” J. Phys. Oceanogr. 33, 530–560 (2003).

    Article  Google Scholar 

  28. O. Thual and J. C. McWilliams, “The Catastrophe Structure of Thermohaline Convection in a 2-Dimensional Fluid Model and a Comparison with Low-Order Box-Models,” Geophys. Astrophys. Fluid Dyn. 64, 67–95 (1992).

    ADS  Google Scholar 

  29. S. Titz, T. Kuhlbrodt, and U. Feudel, “Homoclinic Bifurcation in an Ocean Circulation Box Model,” Int. J. Bif. Chaos 12, 869–875 (2002).

    Article  Google Scholar 

  30. C. Wunsch and R. Ferrari, “Vertical Mixing, Energy, and the General Circulation of the Oceans,” Annu. Rev. Fluid Mech. 36, 281–314 (2004).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucarini, V., Calmanti, S. & Artale, V. Experimental mathematics: Dependence of the stability properties of a two-dimensional model of the Atlantic ocean circulation on the boundary conditions. Russ. J. Math. Phys. 14, 224–231 (2007). https://doi.org/10.1134/S1061920807020124

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061920807020124

Keywords

Navigation