Skip to main content
Log in

Canonical Cartan connection and holomorphic invariants on Engel CR manifolds

  • Published:
Russian Journal of Mathematical Physics Aims and scope Submit manuscript

Abstract

We describe a complete system of invariants for 4-dimensional CR manifolds of CR dimension 1 and codimension 2 with Engel CR distribution by constructing an explicit canonical Cartan connection. The four essential invariants arising from the Cartan curvature are geometrically interpreted. We also investigate the relationship between the Cartan connection and the normal form of the defining equation of an embedded Engel CR manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. K. Beloshapka, “CR-Varieties of the Type (1,2) as Varieties of “Super-High” Codimension,” Russ. J. Math. Phys. 5(2), 399–404 (1998).

    MathSciNet  Google Scholar 

  2. V. K. Beloshapka, “A Universal Model for a Real Submanifold,” Mat. Zametki 75(4), 507–522 (2004); English transl. in: Math. Notes 75 (3–4), 475–488 (2004).

    MathSciNet  Google Scholar 

  3. V. Beloshapka, V. Ezhov, and G. Schmalz, “Holomorphic Classification of 4-Dimensional Submanifolds of ℂ3,” Izv. Ross. Akad. Nauk Ser. Mat. (to appear).

  4. A. Čap and H. Schichl, “Parabolic Geometries and Canonical Cartan Connections,” Hokkaido Math. J. 29(3), 453–505 (2000).

    MathSciNet  MATH  Google Scholar 

  5. A. Čap and G. Schmalz, “Partially Integrable Almost CR Manifolds of CR Dimension and Codimension Two,” in Lie Groups, Geometric Structures and Differential Equations — One Hundred Years After Sophus Lie, Ed. by T. Morimoto, H. Sato, and K. Yamaguchi, Adv. Stud. Pure Math. 37, 45–77 (2002).

  6. É. Cartan, “Sur la géométrie pseudo-conforme des hypersurfaces de l’espace de deux variables complexes,” I, Ann. Math Pure Appl. 11(4), 19–90; II, Ann. Sc. Norm. Super. Pisa 2 (1), 333–354 (1932).

    MathSciNet  Google Scholar 

  7. E. Cartan, “La geometria de las ecuaciones diferenciales de tercer orden,” Rev. Mat. Hispano-Amer. 4, 1–31 (1941).

    Google Scholar 

  8. M. Cowling, F. de Mari, A. Korányi, and H. M. Reimann, “Contact and Conformal Maps in Parabolic Geometry. I,” Geom. Dedicata 111, 65–86 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  9. S.S. Chern, “The Geometry of the Differential Equation y‴ = F(x,y,y′,y″),” Sci. Rep. Nat. Tsing Hua Univ., 97–111 (1940).

  10. S.S. Chern and J. M. Moser, “Real Hypersurfaces in Complex Manifolds,” Acta Math. 133(3–4), 219–271 (1974).

    Article  MathSciNet  Google Scholar 

  11. P. Ebenfelt, “Uniformly Levi Degenerate CR Manifolds; the 5-Dimensional Case,” Duke Math. J. 110(1), 37–80 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  12. P. Ebenfelt, Erratum to “Uniformly Levi Degenerate CR Manifolds; the 5-Dimensional Case” (2005); electronically available at http://www.math.ucsd.edu/:_pebenfel/err_parallelism_021505.pdf.

  13. F. Engel, “Zur Invariantentheorie der Systeme von Pfaff’schen Gleichungen” (Erste Mittheilung), Leipz. Ber. 41, 157–176 (1889).

    Google Scholar 

  14. V. V. Ežov, A. V. Isaev, and G. Schmalz, “Invariants of Elliptic and Hyperbolic C R-Structures of Codimension 2,” Internat. J. Math. 10(1), 1–52 (1999).

    Article  MathSciNet  Google Scholar 

  15. Ch. Fefferman, “Parabolic Invariant Theory in Complex Analysis,” Adv. Math. 31(2), 131–262 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  16. S. Kobayashi, Transformation Groups in Differential Geometry (Springer, New York-Heidelberg, 1972).

    MATH  Google Scholar 

  17. A. Korányi, “Multicontact Maps: Results and Conjectures,” Lecture Notes of Seminario Interdisciplinare di Matematica 4, 57–63 (2005).

    ADS  Google Scholar 

  18. R. Mizner, “CR-Structures of Codimension 2,” J. Differential Geom. 30, 167–190 (1989).

    MATH  MathSciNet  Google Scholar 

  19. S. Neut, “Implantation et nouvelles applications de la méthode d’équivalence de Cartan,” Thesis (l’Université des Sciences et Technologies de Lille I, 2003).

  20. H. Sato and A. Y. Yoshikawa, “Third Order Ordinary Differential Equations and Legendre Connections,” J. Math. Soc. Japan 50(4), 993–1013 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  21. G. Schmalz and J. Slovák, “The Geometry of Hyperbolic and Elliptic CR Manifolds of Codimension Two,” Asian J. Math. 4(3), 565–597 (2000).

    MATH  MathSciNet  Google Scholar 

  22. G. Schmalz and J. Slovák, Addendum to “The Geometry of Hyperbolic and Elliptic CR-Manifolds of Codimension Two,” Asian J. Math. 7(3), 303–306 (2003).

    MATH  MathSciNet  Google Scholar 

  23. N. Tanaka, “On Non-Degenerate Real Hypersurfaces, Graded Lie Algebras and Cartan Connections,” Japan J. Math. 2(1), 131–190 (1976).

    MathSciNet  Google Scholar 

  24. G. Schmalz and A. Spiro, “Explicit Construction of a Chern-Moser Connection for CR Manifolds of Codimension Two,” Ann. Mat. Pura Appl. (4) 185(3), 337–379 (2006).

    MathSciNet  Google Scholar 

  25. K. Yamaguchi, “Differential Systems Associated with Simple Graded Lie Algebras,” Adv. Stud. Pure Math. 22, 413–494 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Beloshapka.

Additional information

This work was carried out in the framework of Australian Research Council Discovery Project DP0450725.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beloshapka, V., Ezhov, V. & Schmalz, G. Canonical Cartan connection and holomorphic invariants on Engel CR manifolds. Russ. J. Math. Phys. 14, 121–133 (2007). https://doi.org/10.1134/S106192080702001X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106192080702001X

Keywords

Navigation