Advertisement

Russian Journal of Mathematical Physics

, Volume 13, Issue 3, pp 340–348 | Cite as

On p-adic twisted q-L-functions related to generalized twisted Bernoulli numbers

  • Y. Simsek
Article

Abstract

In this paper, we construct a twisted q-partial zeta function and some twisted two-variable q-L-functions that interpolate q-Bernoulli numbers, β n,ξ (h) (q), and Bernoulli polynomials, β n,x,ξ (h) (x, q), respectively, at negative integers. Using these functions, we prove the existence of a p-adic interpolation function that interpolates the q-generalized polynomials β n,x,ξ (h) (x, q) at negative integers. Consequently, we define a p-adic twisted q-L-function which is a solution of a question of Kim et al.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Diamond, “The p-Adic Log Gamma Function and p-Adic Euler Constants,” Trans. Amer. Math. Soc. 233, 321–337 (1977).MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    B. Ferrero and R. Greenberg, “On the Behavior of p-Adic L-Functions at s = 0,” Invent. Math. 50, 91–102 (1978/79).MathSciNetCrossRefADSzbMATHGoogle Scholar
  3. 3.
    K. Iwasawa, Lectures on p-Adic L-Functions (Princeton Univ. Press and University of Tokyo Press, Princeton and Tokyo, 1972).zbMATHGoogle Scholar
  4. 4.
    T. Kim, “An Analogue of Bernoulli Numbers and Their Congruences,” Rep. Fac. Sci. Engrg. Saga Univ. Math. 22(2), 21–26 (1994).MathSciNetzbMATHGoogle Scholar
  5. 5.
    T. Kim, “On Explicit Formulas of p-Adic q-L-Functions,” Kyushu J. Math. 48, 73–86 (1994).MathSciNetzbMATHGoogle Scholar
  6. 6.
    T. Kim, “On a q-Analogue of the p-Adic Log Gamma Functions and Related Integrals,” J. Number Theory 76(2), 320–329 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    T. Kim, “On p-Adic q-L-Functions and Sums of Powers,” Discrete Math. 252, 179–187 (2002).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    T. Kim, “q-Volkenborn Integration,” Russ. J. Math. Phys. 19, 288–299 (2002).zbMATHGoogle Scholar
  9. 9.
    T. Kim, “Non-Archimedean q-Integrals Associated with Multiple Changhee q-Bernoulli Polynomials,” Russ. J. Math. Phys. 10, 91–98 (2003).MathSciNetzbMATHADSGoogle Scholar
  10. 10.
    T. Kim, “A Note on Dirichlet L-Series,” Proc. Jangjeon Math. Soc. 6, 161–166 (2003).MathSciNetzbMATHGoogle Scholar
  11. 11.
    T. Kim, “p-Adic q-Integrals Associated with the Changhee-Barnes’ q-Bernoulli Polynomials,” Integral Transforms Spec. Funct. 15, 415–420 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    T. Kim, “q-Riemann Zeta Function,” Int. J. Math. Math. Sci. 2004(12), 599–605 (2004).CrossRefzbMATHGoogle Scholar
  13. 13.
    T. Kim, “Power Series and Asymptotic Series Associated with the q-Analog of the Two-Variable p-Adic L-Function,” Russ. J. Math. Phys. 12(2), 186–196 (2005).MathSciNetzbMATHGoogle Scholar
  14. 14.
    T. Kim, “A New Approach to q-Zeta Function,” Adv. Stud. Contemp. Math. 11(2), 157–162 (2005).MathSciNetzbMATHGoogle Scholar
  15. 15.
    T. Kim, “A New Approach to p-Adic q-L-Functions,” Adv. Stud. Contemp. Math. 12(1) 61–72 (2006).MathSciNetzbMATHGoogle Scholar
  16. 16.
    T. Kim, L. C. Jang, S.-H. Rim, and H. K. Pak, “On the Twisted q-Zeta Functions and q-Bernoulli Polynomials,” Far East J. Appl. Math. 13(1), 13–21 (2003); arXiv:math. NT/0502306.MathSciNetzbMATHGoogle Scholar
  17. 17.
    N. Koblitz, “A New Proof of Certain Formulas for p-Adic L-Functions,” Duke Math. J. 46(2), 455–468 (1979).MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    N. Koblitz, p-Adic Analysis: A Short Course on Recent Work, London Math. Soc. Lecture Note Ser. 46 (Cambridge University Press, 1980).Google Scholar
  19. 19.
    K. Shiratani, “On Euler Numbers,” Mem. Fac. Kyushu Univ. Ser. A 27, 1–5 (1973).MathSciNetzbMATHGoogle Scholar
  20. 20.
    K. Shiratani and S. Yamamoto, “On a p-Adic Interpolation Function for the Euler Numbers and Its Derivatives,” Mem. Fac. Sci. Kyushu Univ. Ser. A 39, 113–125 (1985).MathSciNetzbMATHGoogle Scholar
  21. 21.
    Y. Simsek, “On q-Analogue of the Twisted L-Functions and q-Twisted Bernoulli Numbers,” J. Korean Math. Soc. 40(6), 963–975 (2003).MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Y. Simsek, “On Twisted Generalized Euler Numbers,” Bull. Korean Math. Soc. 41(2), 299–306 (2004).MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Y. Simsek, “Theorems on Twisted L-Function and Twisted Bernoulli Numbers,” Adv. Stud. Contemp. Math. 11(2), 205–218 (2005).MathSciNetzbMATHGoogle Scholar
  24. 24.
    Y. Simsek, “q-Analogue of Twisted l-Series and q-Twisted Euler Numbers,” J. Number Theory 110(2), 267–278 (2005).MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Y. Simsek, “Twisted (h, q)-Bernoulli Numbers and Polynomials Related to Twisted (h, q)-Zeta Function and L-Function,” J. Math. Anal. Appl., in press.Google Scholar
  26. 26.
    Y. Simsek, D. Kim, and S.-H. Rim, “On the Two-Variable Dirichlet q-L-Series,” Adv. Stud. Contemp. Math. 10(2), 131–142 (2005).MathSciNetzbMATHGoogle Scholar
  27. 27.
    H. M. Srivastava, T. Kim, and Y. Simsek, “q-Bernoulli Numbers and Polynomials Associated with Multiple q-Zeta Functions and Basic L-Series,” Russ. J. Math. Phys. 12(2), 241–268 (2005).MathSciNetzbMATHGoogle Scholar
  28. 28.
    L. C. Washington, Introduction to Cyclotomic Fields, 1st Ed. (Springer, 1982).Google Scholar
  29. 29.
    P. T. Young, “On the Behavior of Some Two-Variable p-Adic L-Functions,” J. Number Theory 98(1), 67–88 (2003).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2006

Authors and Affiliations

  • Y. Simsek
    • 1
  1. 1.Department of Mathematics, Faculty of Art and ScienceAkdeniz UniversityAntalyaTurkey

Personalised recommendations