Skip to main content
Log in

Acoustic and Electromagnetic Properties of Maraging Iron–Chromium–Nickel Alloy with Addition of Copper in Mechanical Tension

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The results of studying the acoustic and electromagnetic properties of KhM-12 (15-5 PH, also known as also known as UNS S15500) maraging iron–chromium–nickel alloy with addition of copper after thermal treatment of solution annealing at 1040°C for 0.5 h and subsequent aging at 480 and 565°C for 3 h are presented. The effect of uniaxial stretching of circular cross section samples on the velocities of longitudinal transverse and Rayleigh waves is investigated. The research used an acoustic mirror-shadow method on multiple reflections with the use of electromagnetic-acoustic and piezoelectric transducers based on polyvinylidene fluoride film for excitation and reception of waves. The values of the specific electrical conductivity of alloys and coercive force were measured. The elastic moduli and Poisson’s ratio of the studied samples are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Eremin, E.N., Losev, A.S., Ponomarev, I.A., and Borodikhin, S.A., Thermal treatment impact upon structure, properties and phase structure of steel 10G7M3S2AFTYU weld with powder wire, Sci. Intensive Technol. Mech. Eng., 2020, no. 5 (107), pp. 3–8. https://doi.org/10.30987/2223-4608-2020-5-3-8

  2. Makhneva, T.M., On the stability of the level of mechanical properties of stainless martensitic-aging steels, Probl. Mekh. Materialoved., 2017, pp. 310–317.

    Google Scholar 

  3. Gromov, V.I., Yakusheva, N.A., and Polunov, I.L., Evaluation of the influence of heat treatment modes on the level of mechanical properties of maraging aging steels of the Fe–Ni–Mo–Ti–Al alloying system, Tr. VIAM, 2017, vol. 59, no. 11, p. 2. https://doi.org/10.18577/2307-6046-2017-0-11-2-2

    Article  Google Scholar 

  4. Agbalyan, S.G. and Simonyan, V.A., Review of specifics, production methods and prospects for the use of maraging steels, Int. Res. J., 2022, vol. 122, no. 8. https://doi.org/10.23670/IRJ.2022.122.113

  5. Petrovskii, A.V., Zhmuidin, N.S., and Oborin, L.A., Features of manufacture of cast and welded structures from high-strength steels, Aktual. Vopr. Aviats. Kosmonavt., 2018, vol. 1, no. 14, pp. 451–452.

    Google Scholar 

  6. Luo Hong, Yu Qiang, Dong Chaofang, Sha Gang, Liu Zhenbao, Liang Jianxiong, Wang Li, Han Gang, and Li Xiaogang, Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultrahigh strength stainless steel, Corros. Sci., 2018, vol. 139, pp. 185–196. https://doi.org/10.1016/j.corsci.2018.04.032

    Article  CAS  Google Scholar 

  7. Couturier Laurent, De Geuser Frédéric, and Deschamps Alexis, Microstructural evolution during long time aging of 15–5PH stainless steel, Materialia, 2020, vol. 9, p. 100634. https://doi.org/10.1016/j.mtla.2020.100634

    Article  CAS  Google Scholar 

  8. Valiorgue, F., Zmelty, V., Dumas, M., Chomienne, V., Verdu, C., Lefebvre, F., and Rech, J., Influence of residual stress profile and surface microstructure on fatigue life of a 15-5PH, Proc. Eng., 2018, vol. 213, pp. 623–629. https://doi.org/10.1016/j.proeng.2018.02.058

    Article  Google Scholar 

  9. Zhou Tao, Babu R. Prasath, Odqvist Joakim, Yu Hao, and Hedström Peter, Quantitative electron microscopy and physically based modelling of Cu precipitation in precipitation-hardening martensitic stainless steel 15-5 PH, Mater. & Des., 2018, vol. 143, pp. 141–149. https://doi.org/10.1016/j.matdes.2018.01.049

    Article  CAS  Google Scholar 

  10. Niu, J., Cui, B., Jin, H., Yan, J., Meng, W., Min, C., and Xu, D., Effect of post-weld aging temperature on microstructure and mechanical properties of weld metal of 15-5 PH, J. Mater. Eng. Perform., 2020, vol. 29, pp. 7026–7033. https://doi.org/10.1007/s11665-020-05193-y

    Article  CAS  Google Scholar 

  11. Jin Chunhui, Microstructure and mechanical properties of 15-5 PH stainless steel under different aging temperature, Metall. Res. Technol., 2021, vol. 118, no. 6. https://doi.org/10.1051/metal/2021078

  12. Zhou Tao, Faleskog Jonas, Babu R. Prasath, Odqvist Joakim, Yu Hao, and Hedström Peter, Exploring the relationship between the microstructure and strength of fresh and tempered martensite in a maraging stainless steel Fe–15Cr–5Ni, Mater. Sci. Eng. A, 2019, vol. 745, pp. 420–428. https://doi.org/10.1016/j.msea.2018.12.126

    Article  CAS  Google Scholar 

  13. Avula Indu, Arohi Adya Charan, Kumar Cheruvu Siva, and Sen Indrani, Microstructure, corrosion and mechanical behavior of 15-5 PH stainless steel processed by direct metal laser sintering, J. Mater. Eng. Perform., 2021, vol. 30, pp. 6924–6937. https://doi.org/10.1007/s11665-021-06069-5

    Article  CAS  Google Scholar 

  14. Nong, X.D., Zhou, X.L., Li, J.H., Wang, Y.D., Zhao, Y.F., and Brochu, M., Selective laser melting and heat treatment of precipitation hardening stainless steel with a refined microstructure and excellent mechanical properties, Scripta Materialia, 2020, vol. 178, pp. 7–12. https://doi.org/10.1016/j.scriptamat.2019.10.040

    Article  CAS  Google Scholar 

  15. Sarkar Sagar, Mukherjee Shreya, Kumar Cheruvu Siva, and Nath Ashish Kumar, Effects of heat treatment on microstructure, mechanical and corrosion properties of 15-5 PH stainless steel parts built by selective laser melting process, J. Manuf. Process., 2020, vol. 150, pp. 279–294. https://doi.org/10.1016/j.jmapro.2019.12.048

    Article  Google Scholar 

  16. Dallas Roberts, Zhang Yi, Charit Indrajit, and Zhang Jing, A comparative study of microstructure and high-temperature mechanical properties of 15-5 PH stainless steel processed via additive manufacturing and traditional manufacturing, Prog. Addit. Manuf., 2018, vol. 3, pp. 183–190. https://doi.org/10.1007/s40964-018-0051-5

    Article  Google Scholar 

  17. Sarkar Sagar, Kumar Cheruvu Siva, and Nath Ashish Kumar, Effects of heat treatment and build orientations on the fatigue life of selective laser melted 15-5 PH stainless steel, Mater. Sci. Eng. A, 2019, vol. 755, pp. 235–245. https://doi.org/10.1016/j.msea.2019.04.003

    Article  CAS  Google Scholar 

  18. Uglov, A.L., Khlybov, A.A., Bychkov, A.L., and Kuvshinov, M.O., On nondestructive testing of residual stresses in axially symmetric parts made of steel 03N17K10V10MT, Byull. Izhevsk. Gos. Tekh. Univ. im. M.T. Kalashnikova, 2019, vol. 22, no. 4, pp. 3–9. https://doi.org/10.22213/2413-1172-2019-4-3-9

  19. Khlybov, A.A., Ryabov, D.A., Anosov, M.S., and Belyaev, E.S., Investigation of microstructure features and properties of metals obtained by hot isostatic pressing, Byull. Izhevsk. Gos. Tekh. Univ. im. M.T. Kalashnikova, 2021, vol. 24, no. 4, pp. 4–10. https://doi.org/10.22213/2413-1172-2021-4-4-10

  20. Khlybov, A.A., Kabaldin, Yu.G., Ryabov, D.A., Anosov, M.S., and Shatagin, D.A., Investigation of the damage of 12X18N10T steel samples with low-cycle fatigue by nondestructive testing methods, Zavod. Lab. Diagn. Mater., 2021, vol. 87, no. 5, pp. 61–67. https://doi.org/10.26896/1028-6861-2021-87-5-61-67

    Article  CAS  Google Scholar 

  21. Gonchar, A.V., Klyushnikov, V.A., and Mishakin, V.V., The effect of plastic deformation and subsequent heat treatment on the acoustic and electromagnetic properties of steel 12X18N10T, Zavod. Lab. Diagn. Mater., 2019, vol. 85, no. 2, pp. 23–28. https://doi.org/10.26896/1028-6861-2019-85-2-23-28

    Article  CAS  Google Scholar 

  22. Popova, N.A., Smirnov, A.N., Nikonenko, E.L., Ababkov, N.V., and Koneva, N.A., The effect of deformation on the structural-phase state of the zone of thermal influence in the weld of steel 12Kh18N10T, Izv. Vyssh. Uchebn. Zav. Fiz., 2019, vol. 62, no. 9 (741), pp. 48–56. https://doi.org/10.17223/00213411/62/9/48

  23. Babkin, S.E., Lebedeva, M.Yu., Savchenko, Yu.I., and Vostroknutova, O.N., Measuring the velocity of surface waves of ferromagnetic materials by electromagnetic-acoustic method, Electrotekh. Sist. Kompleksy, 2019, vol. 45, no. 4, pp. 47–51. https://doi.org/10.18503/2311-8318-2019-4(45)-47-51

    Article  Google Scholar 

  24. Murav’eva, O.V., Murav’ev, V.V., Basharova, A.F., Sintsov, M.A., and Bogdan, O.P., Influence of heat treatment and structural state of 40X bar steel on the speed of ultrasonic waves and Poisson’s ratio, Stal’, 2020, no. 8, pp. 63–68.

  25. Murav’ev, V.V., Budrin, A.Yu., and Sintsov, M.A., Structroscopy of heat-treated steel rods by the propagation velocity of Rayleigh waves, Intellekt. Sist. Proizv., 2020, vol. 18, no. 2, pp. 37–43. https://doi.org/10.22213/2410-9304-2020-2-37-43

    Article  Google Scholar 

  26. Murav’ev, V.V., The relationship of ultrasound velocity in steels with their heat treatment modes, Defektosko-piya, 1989, no. 2, pp. 66–68.

  27. Murav’ev, V.V., Effect of heat treatment on ultrasound velocity in aluminum alloys, Defektoskopiya, 1989, no. 11, pp. 65–72.

  28. Livshits, B.G., Kraposhin, V.S., and Linetskii, Ya.L., Fizicheskie svoistva metallov i splavov (Physical Properties of Metals and Alloys), Moscow: Metallurgiya, 1980.

  29. Kazantseva, N.V., Shishkin, D.A., Ezhov, I.V., Davidov, D.I., Rigmant, M.B., Terent’ev, P.B., Egorova, L.Y., and Merkushev, A.G., Magnetic properties and structure of products from 1.4540 stainless steel manufactured by 3D printing, Phys. Met. Metall., 2019, vol. 120, no. 13, pp. 1270–1275. https://doi.org/10.1134/S0031918X19130118

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-19-00252 (https://rscf.ru/project/22-19-00252/) using the Unique Scientific Facility UNU “Information and measurement complex for studying acoustic properties of materials and products,” registration number 586308.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Murav’ev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murav’ev, V.V., Murav’eva, O.V. & Vladykin, A.L. Acoustic and Electromagnetic Properties of Maraging Iron–Chromium–Nickel Alloy with Addition of Copper in Mechanical Tension. Russ J Nondestruct Test 59, 515–523 (2023). https://doi.org/10.1134/S1061830923700365

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830923700365

Keywords:

Navigation