Skip to main content
Log in

Ultrasonic Testing of Butt Joints in Electric Steel Plates Using Lamb Waves

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The influence of the quality of welding thin steel sheets on the physical and mechanical properties of electric steel has been studied using Lamb waves. It is shown that Lamb waves excited in the zero symmetric mode are an effective source of information about the state of the material both in the welded joint of the plates and in the zone of base metal not affected by thermal influences. Markers of the quality of welded joints are determined. It is established that the most informative parameters are the phase velocity of a Lamb wave and its amplitude. Based on velocity measurements, macroscopic anisotropy of the acoustic properties of the material is found. It is assumed that the origin of this anisotropy is due to residual stresses arising in the technological process of processing steel sheets. The results obtained are of interest for specialized quality control of butt joints in thin steel sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Larin, Yu.I., Polyakov, M.Yu., and Tseitlin, G.A., RF Patent RU 2407809 C1, 2010.

  2. Pimenov, V.A., Babushko, Yu.Yu., Bakhtin, S.V., Miroshnikov, Yu.V., Ivliev, S.N., and Fedyukin, O.P., RF Patent RU 2574613 C1, 2016.

  3. Smirnov, A.N., Ozhiganov, E.A., Danilov, V.I., Gorbatenko, V.V., and Murav’ev, V.V., The dependence of local deformations and internal stress fields on welding technique for grade VSt3sp structural steel: I. The influence of welding technique on the mechanical characteristics and acoustic emission parameters of grade VSt3sp steel, Russ. J. Nondestr. Test., 2015, vol. 51, no. 11, pp. 705–712. https://doi.org/10.1134/S1061830915110066

    Article  CAS  Google Scholar 

  4. Kurashkin, K.V. and Mishakin, V.V., Ultrasonic estimation of the residual stresses, Inorg. Mater., 2014, vol. 50, no. 15, pp. 1506–1510. https://doi.org/10.1134/S0020168514150060

    Article  CAS  Google Scholar 

  5. Rosen, A., Jago, R., and Kjer, T., Tensile properties of metastable stainless steels, J. Mater. Sci., 1972, vol. 7, pp. 870–876. https://doi.org/10.1007/BF00550434

    Article  CAS  Google Scholar 

  6. Hecker, S., Stout, M., Staudhammer, K., and Smith, J., Effects of strain state and strain rate on deformation induced transformation in 304 stainless steel: Part I. Magnetic measurements and mechanical behavior, Metall. Trans. A, 1982, vol. 13, pp. 619–626. https://doi.org/10.1007/BF02644427

    Article  CAS  Google Scholar 

  7. Gonchar, A.V., Klyushnikov, V.A., and Mishakin, V.V., Effect of plastic deformation and subsequent heat treatment on the acoustic and magnetic properties of 12Kh18N10T steel, Inorg. Mater., 2020, vol. 56, no. 15, pp. 1–5. https://doi.org/10.1134/S0020168520150066

    Article  Google Scholar 

  8. Gauzzi, F., Montanari, R., Principi, G., and Tata, M.E., AISI 304 steel: Anomalous evolution of martensitic phase following heat treatments at 400°C, Mater. Sci. Eng. A, 2006, vols. 438–440, pp. 202–206. https://doi.org/10.1016/j.msea.2006.02.116

    Article  CAS  Google Scholar 

  9. Sholokhov, M.A., Smorodinskii, Ya.G., Mel’nikov, A.Yu., and Buzorina, D.S., Development of an approach to forecast the defect formation in the end of a weld joint based on the modeling of heat processes, Russ. J. Nondestr. Test., 2020, vol. 56, no. 5, p. 460.

    Article  Google Scholar 

  10. Khan, S.H., Farhad, A., Khan, A.N., and Iqbal, M.A., Eddy current detection of changes in stainless steel after cold reduction, Comput. Mater. Sci., 2008, vol. 43, pp. 623–628. https://doi.org/10.1016/j.commatsci.2008.01.034

    Article  CAS  Google Scholar 

  11. Shaira, M., Guy, P., Courbon, J., and Godin, N., Monitoring of martensitic transformation in austenitic stainless steel 304L by eddy currents, Res. Nondestr. Eval., 2010, vol. 21, no. 2, pp. 112–126. https://doi.org/10.1080/09349840903427854

    Article  Google Scholar 

  12. Shcherbinskii, V.G., Artem’ev, S.A., Antonova, N.M., Panferov, K.V., Grachev, A.Y., Kopylov, A.P., Zakharov, A.F., and Miroshin, S.A., The LIST-4 mobile multichannel device for ultrasonic checking of sheets, Russ. J. Nondestr. Test., 2014, vol. 50, no. 5, pp. 249–253. https://doi.org/10.1134/S1061830914050076

    Article  Google Scholar 

  13. Danilov, V.N., Ushakov, V.M., and Rymkevich, A.I., Investigating the possibilities of assessing the state of the metal structure of pipelines in service by ultrasonic method, Russ. J. Nondestr. Test., 2021, vol. 57, no. 8, pp. 635–646.

    Article  Google Scholar 

  14. Erofeev, V.I., Il’yakhinskii, A.V., Nikitina, E.A., and Rodyushkin, V.M., Means for increasing the sensitivity of acoustic probing when studying the structure of metals, Russ. J. Nondestr. Test., 2018, no. 2, pp. 11–14. https://doi.org/10.1134/S106183091802002X

  15. Murav’ev, V.V., Murav’eva, O.V., and Petrov, K.V., Connection between the properties of 40kh-steel bar stock and the speed of bulk and Rayleigh waves, Russ. J. Nondestr. Test., 2017, vol. 53, no. 8, pp. 560–567. https://doi.org/10.1134/S1061830917080046

    Article  Google Scholar 

  16. Smirnov, A.N., Knyazkov, V.L., Abakov, N.V., Ozhiganov, E.A., Koneva, N.A., and Popova, N.A., Acoustic evaluation of the stress-strained state of welded carbon steel joints after different modes of heat input, Russ. J. Nondestr. Test., 2018, vol. 54, no. 1, pp. 37–43. https://doi.org/10.1134/S1061830918010072

    Article  CAS  Google Scholar 

  17. Khlybov, A.A., Studying the effect of microscopic medium inhomogeneity on the propagation of surface waves, Russ. J. Nondestr. Test., 2018, vol. 54, pp. 385–393. https://doi.org/10.1134/S1061830918060049

    Article  Google Scholar 

  18. Pasmanic, L.A., Kamyshev, A.V., Radostin, A.V., and Zaitsev, V.Yu., Parameters of acoustic inhomogeneity for nondestroductive estimation of the influence of manufacturing technology and operational damage on the structure of metal, Russ. J. Nondestr. Test., 2020, vol. 56, no. 12, pp. 971–983.

    Article  Google Scholar 

  19. Razygraev, N.P., Physics, terminology, and technology in ultrasonic testing with head waves, Defektoskopiya, 2020, no. 9, pp. 3–19. https://doi.org/10.31857/S0130308220090018

  20. Aleshin, N.P., Krys’ko, N.V., Kusii, A.G., Skrynnikov, S.V., and Mogil’ner, L.Yu., Investigating the detectability of surface volumetric defects in ultrasonic testing with the use of rayleigh waves generated by an electromagnetic-acoustic transducer, Russ. J. Nondestr. Test., 2021, vol. 57, no. 5, pp. 361–368.

    Article  Google Scholar 

  21. Murav’eva, O.V. and Murav’ev, V.V., Methodological peculiarities of using SH- and Lamb waves when assessing the anisotropy of properties of flats, Russ. J. Nondestr. Test., 2016, vol. 52, no. 7, pp. 363–369. https://doi.org/10.1134/S1061830916070056

    Article  Google Scholar 

  22. Perov, D.V. and Rinkevich, A.B., Localization of Reflectors in Plates by Ultrasonic Testing with Lamb Waves, Russ. J. Nondestr. Test., 2017, vol. 53, no. 4, pp. 265–278. https://doi.org/10.1134/S1061830917040064

    Article  Google Scholar 

  23. Burkov, M.V., Eremin, A.V., Lyubutin, P.S., Byakov, A.V., and Panin, S.V., Applying an ultrasonic Lamb wave based technique to testing the condition of V96ts3T12 aluminum alloy, Russ. J. Nondestr. Test., 2017, vol. 53, no. 12, pp. 817–829. https://doi.org/10.1134/S1061830917120038

    Article  CAS  Google Scholar 

  24. Iskhuzhin, R.R., Borisov, V.N., Atavin, V.G., Uzkikh, A.A., and Khafizova, K.K., Ultrasonic testing of welds in thin-walled titanium shells using an incomplete penetration indicator, Russ. J. Nondestr. Test., 2021, vol. 57, no. 2, pp. 105–113.

    Article  Google Scholar 

  25. Su, Z.Q. and Ye, L., Identification of Damage Using Lamb Waves: from Fundamentals to Applications, Berlin: Springer, 2009. https://doi.org/10.1007/978-1-84882-784-4

  26. Viktorov, I.A., Fizicheskie osnovy primeneniya ul’trazvukovykh voln Releya i Lemba v tekhnike (Physical Foundations of Application of Rayleigh and Lamb Ultrasonic Waves in Technology), Moscow: Nauka, 1966.

  27. Ermolov, I.N., Aleshin, N.P., and Potapov, A.I., Nerazrushayushchii kontrol’. V 5 kn. (Nondestructive Testing. In 5 Vols.), vol. 2: Akusticheskie metody kontrolya. Prakt. posobie (Acoustic Methods of Testing. A Practical Handbook), Sukhorukov, V.V., Ed., Moscow: Vysshaya Shkola, 1991.

Download references

Funding

The research was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the development program of the Ural Federal University named after the first President of Russia B.N. Yeltsin in accordance with the strategic academic leadership program “Prioritet 2030.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Yu. Biryukov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasil’ev, A.V., Biryukov, D.Y. & Zatsepin, A.F. Ultrasonic Testing of Butt Joints in Electric Steel Plates Using Lamb Waves. Russ J Nondestruct Test 59, 11–21 (2023). https://doi.org/10.1134/S1061830923700171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830923700171

Keywords:

Navigation