Skip to main content
Log in

A Numerical Model for Ultrasonic Time-of-Flight Diffraction (TOFD) Testing of Austenitic Welds

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Austenitic stainless steel welded components are widely used in industrial applications. Due to the large grain size of these welds, ultrasonic testing of them is a difficult task. In this paper, the propagation of ultrasonic waves in austenitic stainless steel welds prepared by shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) processes is modeled by finite element method. The grain structure of welds prepared by these two processes are completely different. First, the exact grain structure of each weld is extracted by examining the weld grain structures on a welded specimen. The weld areas of the two welds are then divided into several domains and the grain orientation of each domain is extracted. The elasticity tensor of the orthotropic weld material is also measured. In meshing of the finite element model, the grain orientation in each domain is accounted for by rotating the elasticity tensor of the elements of that domain along the direction of grains. The propagation of waves in time-of-flight diffraction (TOFD) ultrasonic testing of the welds is then simulated by using this model. Actual TOFD tests are also conducted on the welded test specimen in which crack-like slots are implanted. The TOFD signals collected from welds are then compared with the results obtained from the finite element model. Very good agreement is observed between the simulated and measured results indicating that the proposed finite element model can accurately model the SMAW and GTAW austenitic welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.

Similar content being viewed by others

REFERENCES

  1. Tomlinson, J.R., Wagg, A.R., and Whittle, M.J., Ultrasonic inspection of austenitic welds, Int. Atom. Energ. Agency (IAEA), 1980, paper no. IWGFR–35, pp. 82–95.

  2. Harker, A., Ogilvy, J., and Temple, J., Modeling ultrasonic inspection of austenitic welds, J. Nondestr. Eval., 1990, vol. 9, nos. 2–3, pp. 155–165. https://doi.org/10.1007/BF00566391

    Article  Google Scholar 

  3. Edelmann, X., Ultrasonic examination of austenitic welds at reactor pressure vessels, Nucl. Eng. Des., 1991, vol. 129, no. 3, pp. 341–355. https://doi.org/10.1016/0029-5493(91)90143-6

    Article  CAS  Google Scholar 

  4. Hudgell, R.J., Worrall, G.M., Ford, J., et al., Ultrasonic characterization and inspection of austenitic welds, Int. J. Pres. Ves. Pip., 1989, vol. 39, no. 4, pp. 247–263. https://doi.org/10.1016/0308-0161(89)90088-4

    Article  Google Scholar 

  5. Handbook on the Ultrasonic Examination of Austenitic Welds, Miami: The International Institute of Welding, 1986, pp. 5–18.

  6. Liu, Q. and Wirdelius, H., A 2D model of ultrasonic wave propagation in an anisotropic weld, NDT & E Int., 2007, vol. 40, no. 3, pp. 229–238. https://doi.org/10.1016/j.ndteint.2006.10.004

    Article  CAS  Google Scholar 

  7. Seldis, T. and Pecorari, C., Scattering-induced attenuation of an ultrasonic beam in austenitic steel, J. Acoust. Soc. Am., 2000, vol. 108, no. 2, pp. 580–587. https://doi.org/10.1121/1.429589

    Article  CAS  Google Scholar 

  8. Schmitz, V., Kröning, M., and Chakhlov, S., Modelling of sound fields through austenitic welds, AIP Conf. Proc., 2000, vol. 509, no. 1, pp. 969–976. https://doi.org/10.1063/1.1306149

    Article  Google Scholar 

  9. Chassignole, B., Villard, D., Dubuget, M., et al., Characterization of austenitic stainless steel welds for ultrasonic NDT, AIP Conf. Proc., 2000, vol. 509, no. 1, pp. 1325–1332. https://doi.org/10.1063/1.1307835

    Article  CAS  Google Scholar 

  10. Halkjær, S., Sørensen, M.P., and Kristensen, W.D., The propagation of ultrasound in an austenitic weld, Ultrasonics, 2000, vol. 38, nos. 1–8, pp. 256–261. https://doi.org/10.1016/S0041-624X(99)00103-1

  11. Moysan, J., Apfel, A., Corneloup, G., et al., Modelling the grain orientation of austenitic stainless steel multipass welds to improve ultrasonic assessment of structural integrity, Int. J. Pres. Ves. Pip., 2003, vol. 80, no. 2, pp. 77–85. https://doi.org/10.1016/S0308-0161(03)00024-3

    Article  CAS  Google Scholar 

  12. Subbaratnam, R., Abraham, S.T., Menaka, M., et al., Time of flight diffraction testing of austenitic stainless steel weldments at elevated temperatures, Mater. Eval., 2008, vol. 66, no. 3, pp. 332–337.

    CAS  Google Scholar 

  13. Chassignole, B., Duwig, V., Ploix, M.A., et al., Modelling the attenuation in the ATHENA finite elements code for the ultrasonic testing of austenitic stainless steel welds, Ultrasonics, 2009, vol. 49, no. 8, pp. 653–658. https://doi.org/10.1016/j.ultras.2009.04.001

    Article  CAS  Google Scholar 

  14. Chassignole, B., Dupond, O., Fouquet, T., et al., Application of modelling for enhanced ultrasonic inspection of stainless steel welds, Weld. World, 2011, vol. 55, no. 7, pp. 75–82. https://doi.org/10.1007/BF03321310

    Article  CAS  Google Scholar 

  15. Tabatabaeipour, S.M. and Honarvar, F., A comparative evaluation of ultrasonic testing of AISI 316Lwelds made by shielded metal arc welding and gas tungsten arc welding processes, J. Mater. Process. Tech., 2010, vol. 210, no. 8, pp. 1043–1050. https://doi.org/10.1016/j.jmatprotec.2010.02.013

    Article  CAS  Google Scholar 

  16. Ploix, M.A., Guy, P., Chassignole, B., et al., Measurement of ultrasonic scattering attenuation in austenitic stainless steel welds: Realistic input data for NDT numerical modeling, Ultrasonics, 2014, vol. 54, no. 7, pp. 1729–1736. https://doi.org/10.1016/j.ultras.2014.04.005

    Article  CAS  Google Scholar 

  17. Marsac, Q., Gueudré, C., Ploix, M.A., et al., Realistic model to predict the macrostructure of GTAW welds for the simulation of ultrasonic nondestructive testing, J. Nondestr. Eval., 2020, vol. 39, no. 4, pp. 1–3. https://doi.org/10.1007/s10921-020-00724-y

    Article  Google Scholar 

  18. Ginzel, E., Ultrasonic Time of Flight Diffraction: Fundamentals & Applications for Nondestructive Testing, Waterloo: Eclipse Scientific Products Inc., 2013, pp. 31–47.

    Google Scholar 

  19. Sinclair, A.N., Fortin, J., Honarvar, F., et al., Enhancement of ultrasonic images for sizing of defects by time-of-flight diffraction, NDT & E Int., 2010, vol. 43, no. 3, pp. 258–264.

    Article  CAS  Google Scholar 

  20. Shakibi, B., Honarvar, F., Moles, M.D., et al., Resolution enhancement of ultrasonic defect signals for crack sizing, NDT & E Int., 2012, vol. 52, pp. 37–50. https://doi.org/10.1016/j.ndteint.2009.12.003

    Article  CAS  Google Scholar 

  21. Habibpour-Ledari, A. and Honarvar, F., Three dimensional characterization of defects by ultrasonic time-of-flight diffraction (ToFD) technique, J. Nondestr. Eval., 2018, vol. 37, no. 1, pp. 1–11. https://doi.org/10.1007/s10921-018-0465-5

    Article  Google Scholar 

  22. Charlesworth, J.P. and Temple, J.A.G., Engineering Applications of Ultrasonic Time-of-Flight Diffraction, Philadelphia: Research Studies Press Ltd, 2002, pp. 15–49, 2nd ed.

    Google Scholar 

  23. Qin Liu, Wang, Y., Ye, B., et al., Recognition confidence of welding seam defects in TOFD images based on artificial intelligence, Autom. Control Comp. Sci., 2022, vol. 56, pp. 180–188. https://doi.org/10.3103/S0146411622020079

    Article  Google Scholar 

  24. Sun, X., Lin, L., and Jin, S., Resolution enhancement in ultrasonic TOFD imaging by combining sparse deconvolution and synthetic aperture focusing technique (Sparse-SAFT), Chin. J. Mech. Eng., 2022, vol. 35, no. 1, pp. 1–9. https://doi.org/10.1186/s10033-022-00768-3

    Article  Google Scholar 

  25. Shuohui Chen, Teng, X., Sang, X., et al., Automatic recognition of welding seam defects in TOFD images based on tensor flow, Autom. Control Comp. Sci., 2022, vol. 56, pp. 58–66. https://doi.org/10.3103/S0146411622010035

    Article  Google Scholar 

  26. Jin, S.J., Zhang, B., Sun, X., et al., Reduction of layered dead zone in time-of-flight diffraction (TOFD) for pipeline with spectrum analysis method, J. Nondestr. Eval., 2021, vol. 40, no. 2, pp. 1–9. https://doi.org/10.1007/s10921-021-00781-x

    Article  Google Scholar 

  27. Bazulin, E.G., TOFD echo signal processing to achieve superresolution, Russ. J. Nondestr. Test., 2021, vol. 57, pp. 352–360. https://doi.org/10.1134/S1061830921050053

    Article  Google Scholar 

  28. Bazulin, E.G., Vopilkin, A.K., and Tikhonov, D.S., Determining the coordinates of reflectors in a plane perpendicular to welded joint using echo signals measured by transducers in the TOFD scheme, Russ. J. Nondestr. Test., 2021, vol. 57, pp. 437–445. https://doi.org/10.1134/S106183092106005X

    Article  Google Scholar 

  29. Aleshin, N.P., Mogil’ner, L.Yu., Krys’ko, N.V., et al., Studying applicability of TOFD technique to inspection of welded joints in polyethylene pipes, Russ. J. Nondestr. Test., 2020, vol. 56, pp. 775–783. https://doi.org/10.1134/S1061830920100022

    Article  Google Scholar 

  30. Jin, S.J., Sun, X., Ma, T.T., et al., Quantitative detection of shallow subsurface defects by using mode-converted waves in Time-of-Flight diffraction technique, J. Nondestr. Eval., 2020, vol. 39, no. 2, pp. 1–8. https://doi.org/10.1007/s10921-020-00676-3

    Article  Google Scholar 

  31. Hosseini, S.H. and Honarvar, F., Numerical modeling of the propagation of ultrasonic waves in AISI316L welds made by SMAW and GTAW processes, J. Theor. Appl. Vib. Acoust., 2020, vol. 6, no. 1, pp. 69–80. https://doi.org/10.22064/tava.2021.111405.1141

    Article  Google Scholar 

  32. Pamnani, R., Vasudevan, M., Jayakumar, T., et al., Numerical simulation and experimental validation of arc welding of DMR–249A steel, Defence Tech., 2016, vol. 12, no. 4, pp. 305–315. https://doi.org/10.1016/j.dt.2016.01.012

    Article  Google Scholar 

  33. German Society for Nondestructive Testing. Handbook on the Ultrasonic Examination of Austenitic Welds, Berlin: DVS Media, 2008, pp. 15–20.

  34. Rose, J.L., Ultrasonic Waves in Solid Media, Cambridge: Cambridge University Press, 2004, pp. 27–33.

    Google Scholar 

  35. Lai, M., Rubin, D., and Krempl, E., Introduction to Continuum Mechanics, Oxford: Elsevier, 2010, pp. 201–213, 4th ed.

    Google Scholar 

  36. Papadakis, E.P., Patton, T., Tsai, Y.M., et al., The elastic moduli of a thick composite as measured by ultrasonic bulk wave pulse velocity, J. Acoust. Soc. Am., 1991, vol. 89, no. 6, pp. 2753–2757. https://doi.org/10.1121/1.400714

    Article  Google Scholar 

  37. Adler, L., Cook, K.V., and Fitting, D.W., Ultrasonic Characterization of Austenitic Welds. Report, Oak Ridge: Oak Ridge National Lab., 1978.

    Google Scholar 

  38. Abaqus 6.14, in: Abaqus/CAE User’s Guide, Paris: Dassault Systems, 2014.

  39. Lord, W., Ludwig, R., and You, Z., Developments in ultrasonic modeling with finite element analysis, J. Nondestr. Eval., 1990, vol. 9, no. 2, pp. 129–143. https://doi.org/10.1007/BF00566389

    Article  Google Scholar 

  40. Ludwig, R. and Lord, W., Developments in the finite element modeling of ultrasonic NDT phenomena, Rev. Prog. Quant. Nondestr. Eval., 1986, pp. 73–81.

    Book  Google Scholar 

  41. Shirmohammadi, F., Bahrami, S., Saadatpour, M., et al., Modeling wave propagation in moderately thick rectangular plates using the spectral element method, Appl. Math. Model., 2015, vol. 39, no. 12, pp. 3481–3495. https://doi.org/10.1016/j.apm.2014.11.044

    Article  Google Scholar 

  42. Duan, J.X., Luo, L., Gao, X.R., et al., Hybrid ultrasonic TOFD imaging of weld flaws using wavelet transforms and image registration, J. Nondestr. Eval., 2018, vol. 37, p. 23. https://doi.org/10.1007/s10921-018-0476-2

    Article  Google Scholar 

  43. Yeh, F.W.T., Lukomski, T., Haag, J., et al., An alternative ultrasonic time-of-flight diffraction (TOFD) method, NDT & E Int., 2018, vol. 100, pp. 74–83. https://doi.org/10.1016/j.ndteint.2018.08.008

    Article  Google Scholar 

  44. Honarvar, F., Sheikhzadeh, H., Moles, M., et al., Improving the time-resolution and signal-to-noise ratio of ultrasonic NDE signals, Ultrasonics, 2004, vol. 41, no. 9, pp. 755–763. https://doi.org/10.1016/j.ultras.2003.09.004

    Article  Google Scholar 

  45. Hajian, M. and Honarvar, F., Reflectivity estimation using an expectation maximization algorithm for ultrasonic testing of adhesive bonds, Mater. Eval., 2011, vol. 69, no. 2, pp. 208–219.

    Google Scholar 

  46. Mirahmadi, S.J. and Honarvar, F., Application of signal processing techniques to ultrasonic testing of plates by S0 Lamb wave mode, NDT & E Int., 2011, vol. 44, no. 1, pp. 131–137. https://doi.org/10.1016/j.ndteint.2010.10.004

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Mr. E. Rahimi from AMA Industrial Co. for assistance in fabricating the austenitic weld specimen and molds.

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Seyyed H Hosseini: conceptualization, methodology, validation, analysis, investigation, writing—original draft, writing—review and editing, visualization. Farhang Honarvar: conceptualization, methodology, validation, analysis, investigation, writing—original draft, writing—review and editing, visualization.

Corresponding author

Correspondence to Farhang Honarvar.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflicts of interest.

DATA AVAILABILITY

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.H., Honarvar, F. A Numerical Model for Ultrasonic Time-of-Flight Diffraction (TOFD) Testing of Austenitic Welds. Russ J Nondestruct Test 59, 182–203 (2023). https://doi.org/10.1134/S106183092360003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106183092360003X

Keywords:

Navigation