Skip to main content
Log in

Unknown Bearing Fault Recognition in Strong Noise Background

  • ELECTROMAGNETIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The fault pattern of rolling bearing usually is unknown in heavy noise background, which means the bearing has two possibilities of single part and compound fault. A new diagnosis method of bearing unknown fault is proposed, which can adaptively diagnose the bearing unknown fault with single part or multi-site. The ensemble empirical mode decomposition with the decomposition cut-off frequency is used to decompose noisy signals. Combined with the sample entropy index, a target frequency band screening criterion is structured to select the target frequency band that contains the potentially fault feature. Meanwhile, the advantage of sample entropy in anti-noise interference is analyzed. Subsequently, the spectral magnification is designed as the quantitative indicator to get the optimal system output of target frequency band when the fault frequency is unknown. Finally, the resonance factor is designed to eliminate the false fault caused by coherence resonance. The feasibility of the proposed approach is confirmed with both simulated and experimental signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.

REFERENCES

  1. Li, X., Yu, K., Ma, H., Cao, L., Luo, Z., Li, H., and Che, L., Analysis of varying contact angles and load distributions in defective angular contact ball bearing, Eng. Fail. Anal., 2018, vol. 91, pp. 449–464. https://doi.org/10.1016/j.engfailanal.2018.04.050

    Article  Google Scholar 

  2. Jiang, X., Cheng, X., Shi, J., Huang, W., Shen, C., and Zhu, Z., A new l0-norm embedded MED method for roller element bearing fault diagnosis at early stage of damage, Measurement, 2018, vol. 127, pp. 414–424. https://doi.org/10.1016/j.measurement.2018.06.016

    Article  Google Scholar 

  3. Li, Y., Liang, X., Xu, M., and Huang, W., Early fault feature extraction of rolling bearing based on ICD and tunable Q-factor wavelet transform, Mech. Syst. Signal Process., 2017, vol. 86, pp. 204–223. https://doi.org/10.1016/j.ymssp.2016.10.013

    Article  CAS  Google Scholar 

  4. Pan, Z., Meng, Z., Chen, Z., Gao, W., and Shi, Y., A two-stage method based on extreme learning machine for predicting the remaining useful life of rolling-element bearings, Mech. Syst. Signal Process., 2020, vol. 144, p. 106899. https://doi.org/10.1016/j.ymssp.2020.106899

    Article  Google Scholar 

  5. He, Q., Wu, E., and Pan, Y., Multi-scale stochastic resonance spectrogram for fault diagnosis of rolling element bearings, J. Sound Vib., 2018, vol. 420, pp. 174–184. https://doi.org/10.1016/j.jsv.2018.01.001

    Article  Google Scholar 

  6. Li, B., Li, J., and He, Z., Fault feature enhancement of gearbox in combined machining center by using adaptive cascade stochastic resonance, Sci. Chin. Technol. Sci., 2011, vol. 54, pp. 3203–3210. https://doi.org/10.1007/s11431-011-4612-9

    Article  Google Scholar 

  7. Li, Y., Xu, M., Wei, Y., and Huang, W., A new rolling bearing fault diagnosis method based on multiscale permutation entropy and improved support vector machine based binary tree, Measurement, 2016, vol. 77, pp. 80–94. https://doi.org/10.1016/j.measurement.2015.08.034

    Article  Google Scholar 

  8. Tyagi, S. and Panigrahi, S.K., A DWT and SVM based method for rolling element bearing fault diagnosis and its comparison with Artificial Neural Networks, J. Appl. Comput. Mech., 2017, vol. 3, pp. 80–91. https://doi.org/10.22055/jacm.2017.21576.1108

    Article  Google Scholar 

  9. Udmale, S.S. and Singh, S.K., Application of spectral kurtosis and improved extreme learning machine for bearing fault classification, IEEE Trans. Instrum., 2019, vol. 68, pp. 4222–4233. https://doi.org/10.1109/TIM.2018.2890329

    Article  Google Scholar 

  10. Al-Raheem, K.F., Roy, A., Ramachandran, K.P., Harrison, D.K., and Grainger, S., Application of the Laplace-wavelet combined with ANN for rolling bearing fault diagnosis, J. Vib. Acoust., 2008, vol. 130, p. 051007. https://doi.org/10.1115/1.2948399

    Article  Google Scholar 

  11. Ali, J.B., Fnaiech, N., Saidi, L., Chebel-Morello, B., and Fnaiech, F., Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals, Appl. Acoust., 2015, vol. 89, pp. 16–27. https://doi.org/10.1016/j.apacoust.2014.08.016

    Article  Google Scholar 

  12. Wang, F., Jiang, H.K., Shao, H.D., Duan, W.J., and Wu, S.P., An adaptive deep convolutional neural network for rolling bearing fault diagnosis, Meas. Sci. Technol., 2017, vol. 28, p. 095005. https://doi.org/10.1088/1361-6501/aa6e22

    Article  CAS  Google Scholar 

  13. Zhang, W., Jia, M.P., Zhu, L., and Yan, A., Comprehensive overview on computational intelligence techniques for machinery condition monitoring and fault diagnosis, Chin. J. Mech. Eng., 2017, vol. 30, pp. 782–795. https://doi.org/10.1007/s10033-017-0150-0

    Article  CAS  Google Scholar 

  14. Boutros, T. and Liang, M., Detection and diagnosis of bearing and cutting tool faults using hidden Markov models, Mech. Syst. Signal Process., 2011, vol. 25, pp. 2102–2124. https://doi.org/10.1016/j.ymssp.2011.01.013

    Article  Google Scholar 

  15. Purushotham, V., Narayanan, S., and Prasad, S.A., Multi-fault diagnosis of rolling bearing elements using wavelet analysis and hidden Markov model based fault recognition, NDT & E Int., 2005, vol. 38, pp. 654–664. https://doi.org/10.1016/j.ndteint.2005.04.003

    Article  Google Scholar 

  16. Berredjem, T. and Benidir, M., Bearing faults diagnosis using fuzzy expert system relying on an improved range overlaps and similarity method, Expert Syst. Appl., 2018, vol. 108, pp. 134–142. https://doi.org/10.1016/j.eswa.2018.04.025

    Article  Google Scholar 

  17. Sun, J., Yan, C., and Wen, J., Intelligent bearing fault diagnosis method combining compressed data acquisition and deep learning, IEEE Trans. Instrum., 2017, vol. 67, pp. 185–195. https://doi.org/10.1109/TIM.2017.2759418

    Article  Google Scholar 

  18. Žvokelj, M., Zupan, S., and Prebil, I., EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis, J. Sound Vib., 2016, vol. 370, pp. 394–423. https://doi.org/10.1016/j.jsv.2016.01.046

    Article  Google Scholar 

  19. Wu, Z. and Huang, N.E., Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv. Adapt. Data Anal., 2009, vol. 1, pp. 1–41. https://doi.org/10.1142/S1793536909000047

    Article  Google Scholar 

  20. He, W., Jiang, Z.N., and Feng, K., Bearing fault detection based on optimal wavelet filter and sparse code shrinkage, Measurement, 2009, vol. 42, pp. 1092–1102. https://doi.org/10.1016/j.measurement.2009.04.001

    Article  Google Scholar 

  21. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., and Liu, H.H., The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Math. Phys. Eng. Sci., 1998, vol. 454, pp. 903–995. https://doi.org/10.1098/rspa.1998.0193

    Article  Google Scholar 

  22. Guo, W., Peter, W.T., and Djordjevich, A., Faulty bearing signal recovery from large noise using a hybrid method based on spectral kurtosis and ensemble empirical mode decomposition, Measurement, 2012, vol. 45, pp. 1308–1322. https://doi.org/10.1016/j.measurement.2012.01.001

    Article  Google Scholar 

  23. Lei, Y., He, Z., and Zi, Y., Application of the EEMD method to rotor fault diagnosis of rotating machinery, Mech. Syst. Signal Process., 2009, vol. 23, pp. 1327–1338. https://doi.org/10.1016/j.ymssp.2008.11.005

    Article  Google Scholar 

  24. Wei, M.H., Jiang, L.X., Zhang, D., Wang, B., Tu, F.M., and Jiang, P.B., Bearing fault feature extraction method based on variational mode decomposition of fractional fourier transform, Russ. J. Nondestr. Test., 2022, vol. 58, pp. 221–235. https://doi.org/10.1134/S1061830922030056

    Article  Google Scholar 

  25. Wang, D., Peter, W.T., and Tsui, K.L., An enhanced Kurtogram method for fault diagnosis of rolling element bearings, Mech. Syst. Signal Process., 2013, vol. 35, pp. 176–199. https://doi.org/10.1016/j.ymssp.2012.10.003

    Article  Google Scholar 

  26. Hu, Y., Zhang, S., Jiang, A., Zhang, L., Jiang, W., and Li, J., A new method of wind turbine bearing fault diagnosis based on multi-masking empirical mode decomposition and fuzzy C-means clustering, Chin. J. Mech. Eng., 2019, vol. 32, pp. 1–12. https://doi.org/10.1186/s10033-019-0356-4

    Article  Google Scholar 

  27. Huang, H., Li, K., Su, W., Bai, J., Xue, Z., Zhou, L., and Pecht, M., An improved empirical wavelet transform method for rolling bearing fault diagnosis, Sci. China Technol. Sci., 2020, vol. 63, pp. 2231–2240. https://doi.org/10.1007/s11431-019-1522-1

    Article  Google Scholar 

  28. Kappaganthu, K. and Nataraj, C., Feature selection for fault detection in rolling element bearings using mutual information, J. Vib. Acoust., 2011, vol. 133, p. 061001. https://doi.org/10.1115/1.4003400

    Article  Google Scholar 

  29. Huo, Z., Martínez-García, M., Zhang, Y., Yan, R., and Shu, L., Entropy measures in machine fault diagnosis: Insights and applications, IEEE Trans. Instrum., 2020, vol. 69, pp. 2607–2620. https://doi.org/10.1109/TIM.2020.2981220

    Article  Google Scholar 

  30. Li, Y., Wang, X., Liu, Z., Liang, X., and Si, S., The entropy algorithm and its variants in the fault diagnosis of rotating machinery: A review, IEEE Access, 2018, vol. 6, pp. 66723–66741. https://doi.org/10.1109/ACCESS.2018.2873782

    Article  Google Scholar 

  31. Richman, J.S. and Moorman, J.R., Physiological time-series analysis using approximate entropy and sample entropy, Am. J. Physiol.-Heart. C, 2000, vol. 278, pp. 2039–2049. https://doi.org/10.1152/ajpheart.2000.278.6.H2039

    Article  Google Scholar 

  32. Pincus, S.M., Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci., 1991, vol. 88, pp. 2297–2301. https://doi.org/10.1073/pnas.88.6.2297

    Article  CAS  Google Scholar 

  33. Han, M. and Pan, J., A fault diagnosis method combined with LMD, sample entropy and energy ratio for roller bearings, Measurement, 2015, vol. 76, pp. 7–19. https://doi.org/10.1016/j.measurement.2015.08.019

    Article  Google Scholar 

  34. Ning, S., Han, Z., Wang, Z., and Wu, X., Application of sample entropy based LMD-TFPF de-noising algorithm for the gear transmission system, Entropy, 2016, vol. 18, p. 414. https://doi.org/10.3390/e18110414

    Article  Google Scholar 

  35. Ni, Q., Feng, K., Wang, K., Yang, B., and Wang, Y., A case study of sample entropy analysis to the fault detection of bearing in wind turbine, Case Stud. Eng. Fail. Anal., 2017, vol. 9, pp. 99–111. https://doi.org/10.1016/j.csefa.2017.10.002

    Article  Google Scholar 

  36. Benzi, R., Sutera, A., and Vulpiani, A., The mechanism of stochastic resonance, J. Phys. A: Math. Gen., 1981, vol. 14, pp. L453–L457. https://doi.org/10.1088/0305-4470/14/11/006

    Article  Google Scholar 

  37. Liu, R.N. and Kang, Y. M., Stochastic resonance in underdamped periodic potential systems with alpha stable Lévy noise, Phys. Lett. A, 2018, vol. 382, pp. 1656–1664. https://doi.org/10.1016/j.physleta.2018.03.054

    Article  CAS  Google Scholar 

  38. Zhang, X., Hu, N., Hu, L., and Cheng, Z., Multi-scale bistable stochastic resonance array: A novel weak signal detection method and application in machine fault diagnosis, Sci. Chin. Technol. Sci., 2013, vol. 56, pp. 2115–2123. https://doi.org/10.1007/s11431-013-5246-x

    Article  Google Scholar 

  39. Lu, S., He, Q., and Wang, J., A review of stochastic resonance in rotating machine fault detection, Mech. Syst. Signal Process., 2019, vol. 116, pp. 230–260. https://doi.org/10.1016/j.ymssp.2018.06.032

    Article  Google Scholar 

  40. Li, Z., Liu, X., Han, S., Wang, J., and Ren, X., Fault diagnosis method and application based on unsaturated piecewise linear stochastic resonance, Rev. Sci. Instrum., 2019, vol. 90, p. 065112. https://doi.org/10.1063/1.5083990

    Article  CAS  Google Scholar 

  41. Yang, C., Yang, J., Zhu, Z., Shen, G., and Zheng, Y., Distinguish coherence resonance and stochastic resonance in bearing fault evaluation, Meas. Sci. Technol., 2020, vol. 31, p. 045001. https://doi.org/10.1088/1361-6501/ab50aa

    Article  CAS  Google Scholar 

  42. Gang, H., Ditzinger, T., Ning, C.Z., and Haken, H., Stochastic resonance without external periodic force, Phys. Rev. Lett., 1993, vol. 71, p. 807. https://doi.org/10.1103/PhysRevLett.71.807

    Article  CAS  Google Scholar 

  43. Lu, J., Huang, M., and Yang, J.J., A novel spectrum sensing method based on tri-stable stochastic resonance and quantum particle swarm optimization, Wirel. Pers. Commun., 2017, vol. 95, pp. 2635–2647. https://doi.org/10.1007/s11277-017-3945-5

    Article  Google Scholar 

  44. Wang, Y., Yang, L., Xiang, J., Yang, J., and He, S., A hybrid approach to fault diagnosis of roller bearings under variable speed conditions, Meas. Sci. Technol., 2017, vol. 28, p. 125104. https://doi.org/10.1088/1361-6501/aa9460

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by National Natural Science Foundation of China (grant no. 12072362) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongqiu Wang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Wang, Z., Gong, T. et al. Unknown Bearing Fault Recognition in Strong Noise Background. Russ J Nondestruct Test 59, 560–582 (2023). https://doi.org/10.1134/S1061830923600016

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830923600016

Keywords:

Navigation