Skip to main content
Log in

Compressive Thermal Wave Imaging for Subsurface Analysis

  • THERMAL METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Subsurface detail extraction in active thermography demands high capturing rates, resulting in less exposure time, data redundancy, large bandwidth requirement, and wastage of sensing resources and memory. Compressive sensing (CS) is a data acquisition technique that overcomes these limitations by acquiring the signal at sub-Nyquist rates with fewer measurements considering the signal is sparse in some transformed domains and reconstructing the original response. This paper validates the application of CS in frequency modulated thermal wave imaging by experimenting on a quick responsive mild steel specimen with artificially simulated back hole defects. The discrete cosine transform is selected as sparsity prior and the orthogonal matching pursuit is used to reconstruct the original thermal response from the compressed measurements. The initial analysis is carried out on choosing the optimal sparsity parameter and the number of measurements, followed by the effect of the number of measurements on defect detection in various postprocessing techniques used in frequency modulated stimulus. The defects detected and their qualitative analysis through assessing signal-to-noise ratio confirmed the suitability of CS for efficient reconstruction of thermal data and thereby enhancing the defect signature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Candes, E., Compressive Sampling, Int. Congress Math., 2006, pp. 1433–1452.

  2. Candes, E. and Wakin, M., An introduction to compressive sampling, IEEE Sign. Proces. Mag., 2008, vol. 25, no. 2, pp. 21–30.

    Article  Google Scholar 

  3. Davenport, M., Duarte, M., Eldar, Y., and Kutyniok, G., Introduction to compressed sensing, in: Compressed Sensing: Theory and Applications, Cambridge: Cambridge University Press, 2012.

    Google Scholar 

  4. de Oliveira, Mateus M., Mahdi Khosravy, Henrique L.M. Monteiro, Thales W. Cabral, Felipe M. Dias, Marcelo A.A. Lima, Leandro R. Manso Silva, and Carlos A. Duque, Compressive sensing of electroencephalogram: a review, Compressive Sens. Health., 2020, pp. 247–268.

  5. Gunasheela, S.K., and Prasantha, H.S., Compressed sensing for image compression: survey of algorithms, In: Emerging Research in Computing, Information, Communication and Applications, Berlin: Springer, 2019, pp. 507–517.

    Google Scholar 

  6. Shi Jianing V., Aswin C. Sankaranarayanan, Christoph Studer, and Richard G. Baraniuk., Video compressive sensing for dynamic MRI, BMC Neurosci., 2012, vol. 13, no. 1, p. 1.

    Google Scholar 

  7. Maldague, X.P.V., Theory and Practice of Infrared Thermography for Nondestructive Testing, New York: Wiley, 2001.

    Google Scholar 

  8. Ciampa Francesco, Pooya Mahmoodi, Fulvio Pinto, and Michele Meo, Recent advances in active infrared thermography for nondestructive testing of aerospace components, Sensors, 2018, vol. 18, no. 2, p. 609.

    Article  Google Scholar 

  9. Bison, P.G., Bressan, C., Di Sarno, R., Grinzato, E., Marinetti, S., and Manduchi, G., Thermal NDE of delaminations in plastic materials by neural network processing, QIRT, 1995, vol. 94, pp. 214–219.

    Google Scholar 

  10. Ibarra-Castanedo, C., Hernan Benítez, Maldague, X., and Abdelhakim Bendada, Review of thermal-contrast-based signal processing techniques for the nondestructive testing and evaluation of materials by infrared thermography, Proc. Int. Workshop Imag. NDE, Kalpakkam, 2007, pp. 1–6.

  11. Bagavac Petra, Lovre Krstulović-Opara, and Željko Domazet, Infrared thermography of steel structure by FFT, Mater. Today Proc., 2019, vol. 12, pp. 298–303.

    Article  Google Scholar 

  12. Garrido Iván, Susana Lagüela, Stefano Sfarra, and Pedro Arias, Development of thermal principles for the automation of the thermographic monitoring of cultural heritage, Sensors, 2020, vol. 20, no. 12, p. 3392.

    Article  Google Scholar 

  13. Panella, F.W. and Pirinu, A., Application of pulsed thermography and post-processing techniques for CFRP industrial components, J. Nondestr. Eval., 2021, vol. 40, no. 2, pp. 1–17.

    Article  Google Scholar 

  14. Fleuret Julien R., Samira Ebrahimi, Clemente Ibarra-Castanedo, and Xavier P.V. Maldague, Independent component analysis applied on pulsed thermographic data for carbon fiber reinforced plastic inspection: A comparative study, Appl. Sci., 2021, vol. 11, no. 10, p. 4377.

    Article  Google Scholar 

  15. Lopez Fernando, Clemente Ibarra-Castanedo, Vicente de Paulo Nicolau, and Xavier Maldague, Optimization of pulsed thermography inspection by partial least-squares regression, NDT & E Int., 2014, vol. 66, pp. 128–138.

    Article  Google Scholar 

  16. Subhani, S.K., Suresh, B., and Ghali, V.S., Orthonormal projection approach for depth-resolvable subsurface analysis in non-stationary thermal wave imaging, Insight Nondestr. Test. Condit. Monit., 2016, vol. 58, no. 1, pp. 42–45.

    Article  Google Scholar 

  17. Tabatabaei Nima and Andreas Mandelis, Thermal-wave radar: a novel subsurface imaging modality with extended depth-resolution dynamic range, Rev. Sci. Instrum., 2009, vol. 80, no. 3, p. 034902.

    Article  Google Scholar 

  18. Wang Fei, Yonghui Wang, Junyan Liu, and Yang Wang, The feature recognition of CFRP subsurface defects using low-energy chirp-pulsed radar thermography, IEEE Trans. Ind. Inform., 2019, vol. 16, no. 8, pp. 5160–5168.

    Google Scholar 

  19. Rani Anju and Ravibabu Mulaveesala, Depth resolved pulse compression favourable frequency modulated thermal wave imaging for quantitative characterization of glass fibre reinforced polymer, Infrared Phys. & Technol., 2020, vol. 110, p. 103441.

    Article  Google Scholar 

  20. Deane Shakeb, Nicolas P. Avdelidis, Clemente Ibarra-Castanedo, Alex A. Williamson, Stephen Withers, Argyrios Zolotas, Xavier P.V. Maldague, et al., Development of a thermal excitation source used in an active thermographic UAV platform, Quantit. InfraRed Thermography J., 2022, pp. 1–32.

    Google Scholar 

  21. Roy Deboshree and Suneet Tuli, Applicability of LED-based excitation source for defect depth resolved frequency modulated thermal wave imaging, IEEE Trans. Instrum. Meas., 2017, vol. 66, no. 10, pp. 2658–2665.

    Article  Google Scholar 

  22. Roy Deboshree, Prabhu Babu, and Suneet Tuli, Sparse reconstruction-based thermal imaging for defect detection, IEEE Trans. Instrum. Meas., 2019, vol. 68, no. 11, pp. 4550–4558.

    Article  Google Scholar 

  23. Ahmadi Samim, Burgholzer, P., Mayr, G., Jung, P., Caire, G., and Mathias Ziegler, Photothermal super resolution imaging: A comparison of different thermographic reconstruction techniques, NDT & E Int., 2020, vol. 111, p. 102228.

    Article  Google Scholar 

  24. Chen, S.S., Donoho, D.L., and Saunders, M.A., Atomic decomposition by basis pursuit, SIAM J. Sci. Comput., 1999, vol. 43, no. 1, pp. 129–159.

    Google Scholar 

  25. Subhani, Sk., Rama Chaithanya Tanguturi, and Ghali, V.S., Chirp Z transform based barker coded thermal wave imaging for the characterization of fiber reinforced polymers, Russ. J. Nondestr. Test., 2021, vol. 57, no. 7, pp. 627–634.

    Article  CAS  Google Scholar 

  26. Vesala, G.T., Ghali, V.S., Subhani, S., and Naga Prasanthi, Y., Material characterization by enhanced resolution in non-stationary thermal wave imaging, Insight Nondestr. Test. Condit. Monit., 2021, vol. 63, no. 12, pp. 721–726.

    Article  CAS  Google Scholar 

  27. Candes, E. and Romberg, J., Practical signal recovery from random projections, IEEE Trans. Sign. Proces., 2005.

    Google Scholar 

  28. Candes, E., Romberg, J., and Tao, T., Stable signal recovery from incomplete and inaccurate measurements, Commun. Pure Appl. Math., 2006, vol. 59, no. 8, pp. 1207–1223.

    Article  Google Scholar 

  29. Candes, E.J. and Romberg, J., Sparsity and incoherence in compressive sampling, Inverse Probl., 2007, vol. 23 no. 3, pp. 969–985.

    Article  Google Scholar 

  30. Candes, E. and Tao, T., Near optimal signal recovery from random projections and universal encoding strategies, Technical Report, 2004, math.CA/0410542.

  31. Pati, Y.C., Rezaifar, R., and Krishnaprasad, P.S., Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition, Proc. Rec. 27th Asilomar. Conf. Sign. Syst. Comput., 1993.

  32. Murthy, N.S.S.R. and Muralikrishna, I.V., Comparative Analysis of FFT and DCT Performances in image compression and evaluation of their performances, Indian J. Appl. Res., 2015, vol. 5, no. 11.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. M. Pasha.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasha, M.M., Ghali, V.S., Vesala, G.T. et al. Compressive Thermal Wave Imaging for Subsurface Analysis. Russ J Nondestruct Test 59, 215–227 (2023). https://doi.org/10.1134/S1061830922601155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830922601155

Keywords:

Navigation