Skip to main content
Log in

Acoustic Testing of Composite Rebars Taking into Account Reinforcement Ratio

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The need for effective and productive technical means of testing composite materials produced in the form of extended elements (pipes, rods, etc.) requires the adaptation of waveguide testing methods to the features of composite materials. The waveguide method makes it possible to evaluate the rod quality without scanning and uses a sensor mounted at the endpoint of the test object. Detuning from the influence of acoustic contact on the result is achieved using a parameter defined as the ratio of the inhomogeneity echo signal to the amplitude of the signal reflected from the opposite end. The reinforcement ratio of the composite material has a significant impact on the results. For composite rebars it is fiberglass. A model is proposed that takes into account the influence of the rod reinforcement ratio on the testing results by rod waves. On the basis of the model, coefficients and nomograms are calculated that make it possible to take the reinforcement ratio of the rod and the length of a defect into account when deciding on its significance. The result of assessing the significance of defects identified in 5 batches of rebars from different manufacturers is presented. Defects that are significant and insignificant for the properties of composite rebars are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Fedotov, M.Yu., Budadin, O.N., Kozel’skaya, S.O., Ovchinnikov, I.G., and Shelemba, I.S., External reinforcement with composite materials and optical monitoring of reliability of operation of construction structures (a review), Konstr. Kompoz. Mater., 2022, no. 1 (165), pp. 57–67. https://doi.org/10.52190/2073-2562_2022_1_57

  2. Begunova, N.V., Grakhov, V.P., Vozmishchev, V.N., and Kislyakova, Yu.G., Comparative evaluation of results on test of concrete beams with fiberglass rebar and calculated data, Nauka Tekh., 2019, vol. 18, no. 2, pp. 155–163. https://doi.org/10.21122/2227-1031-2019-18-2-155-163

    Article  Google Scholar 

  3. Frantsev, M.E., Investigation of the superstructure made of composites of a passenger hydrofoil vessel by acoustic methods of nondestructive testing, V Mire NK, 2016, vol. 19, no. 4, pp. 13–17.

    Google Scholar 

  4. Soliman Ehab, S.M.M., El-Sayed Tamer, A., and Naga Soheir, A.R., A new approach to design a composite material for light mono leaf spring using fea, Vestn. IzhGTU, 2016, vol. 19, no. 1, pp. 8–13. https://doi.org/10.22213/2413-1172-2016-1-8-13

    Article  Google Scholar 

  5. Stepanova, V.F., Il’in, D.A., and Buchkin, A.V., Hybrid composite reinforcement with increased modulus of elasticity, Estestv. Tekh. Nauki, 2014, nos. 9–10 (77), pp. 435–437.

  6. Nikolenko, P.V., Shkuratnik, V.L., and Chepur, M.D., Acoustic emission effects in tension of composites and practical applications for roof control in underground mines, Gorn. Zh., 2019, no. 1, pp. 13–16.

  7. Usachev, A.M., Khorokhordin, A.M., and Danilova, A.V., Analysis of prospects for the development of the steel and composite reinforcement market, Nauchn. Vestn. Voronezh. Gos. Arkhit.-Stroit. Univ., 2016, no. 2 (13), pp. 122–126.

  8. Gladunova, O.I. and Lisenko, A.A., World and Russian market of polymer composite materials. Trends and prospects, Vestn. S.-Peterb. Gos. Univ. Tekhnol. Diz., 2021, no. 2, pp. 96–100. https://doi.org/10.46418/2079-8199_2021_2_15

  9. Dolgikh, M.V., Fedosova, O.G., Dergach, I.A., and Ondar, A.A., Advantages and disadvantages of using composite reinforcement, Innovation & Investment, 2019, no. 10, pp. 298–300.

  10. Grakhov, V.P. and Saidova, Z.S., Method for Calculating the Degree of Cure of Fiber Reinforced Polymer, Intell. Syst. Manuf., 2017, vol. 15, no. 1, pp. 96–98. https://doi.org/10.22213/2410-9304-2017-1-96-98

    Article  Google Scholar 

  11. Stepanova, L.N., Ramazanov, I.S., and Chernova, V.V., Acoustic emission control of destruction process of carbon fiber reinforced plastic specimens made by vacuum molding, Konstr. Kompoz. Mater., 2019, no. 3 (155), pp. 64–69.

  12. Smelkov, S.L., Ways to control reinforced composites, Probl. Mashinostr. Avtom., 2019, no. 4, pp. 49–52.

  13. Trifonova, S.I., Generalov, A.S., and Dalin, M.A., Modern technologies and means of shadow ultrasonic control of polymer composite materials, Tekhnol. Mashinostr., 2017, no. 7, pp. 37–43.

  14. Gholizadeh, S., A review of nondestructive testing methods of composite materials, Proc. XV Port. Conf. Fracture PCF 2016 (Paço de Arcos, February 10–12, 2016), vol. 1.

  15. Murashov, V.V., Research and improvement of acoustic low-frequency control methods of products from layered plastics and multilayered glued constructions, Aviats. Mater. Tekhnol., 2018, no. 4 (53), pp. 87–93.

  16. Saidova, Z., Grakhov, V.P., Yakovlev, G., Gordina, A., and Zakharov, A., Thermal analysis of glass-fiber reinforced polymer rebars, Eng. Struct. Technol., 2017, vol. 9, no. 3, pp. 142–147.

    Google Scholar 

  17. Shpil’noi, V.Yu., Vavilov, V.P., Derusova, D.A., Druzhinin, N.V., and Yamanovskaya, A.Yu., Specific features of nondestructive testing of polymer and composite materials using air-coupled ultrasonic excitation and laser vibrometry, Russ. J. Nondestr. Test., 2021, vol. 57, no. 8, pp. 647–655.

    Article  Google Scholar 

  18. Bazulin, A.E., Bazulin, E.G., Vopilkin, A.H., Tikhonov, D.S., Smotrova, S.A., and Ivanov, V.I., Testing samples made of polymer composite materials using ultrasonic antenna arrays, Russ. J. Nondestr. Test., 2022, vol. 58, no. 6, pp. 411–424.

    Article  Google Scholar 

  19. Kachanov, V.K., Sokolov, I.V., Pervushin, V.V., and Timofeev, D.V., Structure analysis of products made of polymer materials using instantaneous spectra of ultrasonic signals, Russ. J. Nondestr. Test., 2019, vol. 55, no. 6, pp. 427–433. https://doi.org/10.1134/S0130308219060010

    Article  Google Scholar 

  20. Derusova, D.A., Vavilov, V.P., Shpil’noi, V.Y., Nekhoroshev, V.O., and Druzhinin, N.V., Features of  laser-vibrometric nondestructive testing of polymer composite materials using air-coupled ultrasonic transducers, Russ. J. Nondestr. Test., 2021, vol. 57, no. 12, pp. 1060–1071.

    Article  Google Scholar 

  21. Smotrova, S.A., Smotrov, A.V., and Ivanov, V.I., Barely visible impact damage vid detectability comparison of execution results of nondestructive ultrasonic control and optical sureace profilometry of polymer composite materials-samples, Konstr. Kompoz. Mater., 2021, no. 4 (164), pp. 43–50. https://doi.org/10.52190/2073-2562_2021_4_43

  22. Murav'eva, O.V., Strizhak, V.A., Zlobin, D.V., Murashov, S.A., Pryakhin, A.V., and Myshkin, Yu.V., Acoustic waveguide control of elements of downhole pumping equipment, Neft. Khoz., 2016, no. 9, pp. 110–115.

  23. Murashov, V.V. and Generalov, A.S., Control of multilayer adhesive structures low-frequency acoustic methods, Aviats. Mater. Tekhnol., 2014, no. 2 (31), pp. 59–67.

  24. Evlampiev, A.I., Popov, E.D., Sazhin, S.G., Fedosenko, Yu.K., Gerasimov, V.G., Pokrovskii, A.D., and Ostanin, Yu.Ya., Nerazrushayuschiy kontrol’. Spravochnik (Nondestructive Testing. A Handbook), Klyuev, V.V., Ed., Moscow: Mashinostorenie, 2006, 2nd ed.

    Google Scholar 

  25. Murav’eva, O.V., Khasanov, R.R., Strizhak, V.A., and Mkrtchyan, S.S., Water absorption effect on the propagation velocity of normal waves in composite rebars, Mater. Sci. Forum, 2019, vol. 970, pp. 202–209. https://doi.org/10.4028/www.scientific.net/MSF.970.202

    Article  Google Scholar 

  26. Strizhak, V.A., Khasanov, R.R., and Pryakhin, A.V., Features of excitation of an electromagnetic acoustic transducer under a waveguide method of testing, Vestn. IzhGTU, 2018, vol. 21, no. 2, pp. 159–166. https://doi.org/10.22213/2413-1172-2018-2-159-166

    Article  Google Scholar 

  27. Murav’eva, O.V., Murav’ev, V.V., Strizhak, V.A., Murashov, S.A., and Pryakhin, A.V., Akusticheskii volnovodnyi kontrol’ lineino-protyazhennykh ob’ektov (Acoustic Waveguide Testing of Linearly Extended Objects), Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2017.

  28. Solodov, I.Yu. and Kreutsbrook, M., Resonant defects: A new approach to increasing the sensitivity of NC methods using ultrasonic stimulation of defects, V Mire NK, 2016, vol. 19, no. 4, pp. 8–12.

    Google Scholar 

  29. Dobrovolskiy, D.S., The influence of rod incisions on the stress intensity coefficients of annular cracks, Vestn. IzhGTU, 2016, vol. 19, no. 2, pp. 6–8. https://doi.org/10.22213/2413-1172-2016-2-6-8

    Article  Google Scholar 

  30. Ganziy, Yu.V., Identification of danger of receiving low-quality production from polymeric composite material on the example of constructive composite fittings, Vestn. IzhGTU, 2018, vol. 21, no. 3, pp. 13–19. https://doi.org/10.22213/2413-1172-2018-3-13-19

    Article  Google Scholar 

  31. Buchkin, A.V., Stepanova, V.F., Strizhak, V.A., Yurin, E.Yu., and Nikishov, E.I., Nondestructive testing of composite polymer reinforcement, Stroit. Mater. Oborud. Tekhnol. XXI Cent., 2021, no. 4 (267), pp. 59–66.

  32. Mahmoud, M., Zaghloul, Y., Karen Steel, K., Martin Veidt, M., and Heitzmann, M.T., Wear behaviour of polymeric materials reinforced with man-made fibres: A comprehensive review about fibre volume fraction influence on wear performance, J. Reinf. Plast. Compos., 2021, no. 10, pp. 215–241.

  33. Karakoc, A., Bulota, M., Hummel, M., Sriubaitė, S., Hughes, M., Sixta, H., and Paltakari, J., Effect of singlefiber properties and fiber volume fraction on the mechanical properties of Ioncell fiber composites, J. Reinf. Plast. Compos., 2021, no. 3, pp. 741–748.

  34. Murav’eva, O.V., Strizhak, V.A., and Pryakhin, A.V., Estimation of the sensitivity of acoustic reflectometry to flaws in heat-exchange pipes, Russ. J. Nondestr. Test., 2017, vol. 53, no. 3, pp. 190–197.

    Article  Google Scholar 

  35. Murav'eva, O.V. and Zlobin, D.V., The acoustic path in the method of multiple reflections during nondestructive testing of linearly extended objects, Russ. J. Nondestr. Test., 2013, vol. 49, no. 2, pp. 93–99.

    Article  Google Scholar 

  36. Strizhak, V.A., Artificial reflector for setting up a flaw detector that implements an acoustic waveguide method for monitoring composite reinforcement, Vestn. IzhGTU, 2020, vol. 23, no. 2, pp. 5–15. https://doi.org/10.22213/2413-1172-2020-2-5-15

    Article  Google Scholar 

  37. Strizhak, V.A., Pryakhin, A.V., Khasanov, R.R., and Mkrtchyan, S.S., Flaw detection of composite reinforcement by acoustic waveguide method, Vestn. IzhGTU, 2019, vol. 22, no. 1, pp. 78–88. https://doi.org/10.22213/2413-1172-2019-1-78-88

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-19-00252, https://rscf.ru/project/22-19-00252/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Strizhak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strizhak, V.A. Acoustic Testing of Composite Rebars Taking into Account Reinforcement Ratio. Russ J Nondestruct Test 58, 891–902 (2022). https://doi.org/10.1134/S1061830922600836

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830922600836

Keywords:

Navigation