Skip to main content
Log in

Digital Coherent Signal Processing with Calculations in Frequency Domain for Solving Ultrasound Tomography Problems Using Matrix Antenna Arrays with Nonequidistant Arrangement of Elements

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The task of increasing the speed of defect image restoration is an urgent problem in the development of industrial ultrasound tomography based on digital coherent processing of matrix antenna array (AA) signals. In the context of this problem, the joint use of computationally efficient algorithms with calculations in the frequency domain and matrix AAs with nonequidistant arrangement of elements is considered within the framework of this paper. The joint application of these approaches to increase the speed of producing results is ensured through the use of a digital coherent processing algorithm based on the nonuniform fast Fourier transform (NUFFT). The effectiveness of this algorithm has been confirmed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Bazulin, E.G., Comparison of systems for ultrasonic nondestructive testing using antenna arrays or phased antenna arrays, Russ. J. Nondestr. Test., 2013, vol. 49, no. 7, pp. 404–423.

    Article  Google Scholar 

  2. Samokrutov, A.A. and Shevaldykin, V.G., Ultrasonic tomography of metal structures using the digitally focused antenna array method, Russ. J. Nondestr. Test., 2011, vol. 47, no. 1, pp. 16–29.

    Article  CAS  Google Scholar 

  3. Holmes, C., Drinkwater, B., and Wilcox, P., The post-processing of ultrasonic array data using the total focusing method, Northampton: Insight, 2004, vol. 46, no. 11, pp. 677–680.

    Article  Google Scholar 

  4. Eddyfi, M2M Gekko Specifications Sheet. https://eddyfi.com/doc/Downloadables/201906_M2M-GEKKO-specifications-sheet_A4-01.pdf. Accessed July 20, 2022.

  5. Olympus official site, OmniScan X3 64. https://www.olympus-ims.com/ru/phasedarray/omniscan-x3/. Accessed July 20, 2022.

  6. NPTs ECHO+ company official web-site, AVGUR-ART flaw detector. https://echoplus.ru/products/defektoskopy/augur-art/. Accessed July 20, 2022.

  7. AKS company official web-site, High-frequency ultrasonic flaw detector-tomograph a1550 introvisor. https://acsys.ru/vyisokochastotnyij-ultrazvukovojdefektoskop-tomograf-a1550-introvisor/. Accessed July 20, 2022.

  8. Dolmatov, D.O., Tarrazó-Serrano, D., Filippov, G.A., Minin, I.V., Minin, O.V., and Sednev, D.A., Application of phase-reversal fresnel zone plates for improving the elevation resolution in ultrasonic testing with phased arrays, Sensors, 2019, vol. 19, no. 23, p. 5080.

    Article  Google Scholar 

  9. Bazulin, E.G., Ultrasonic testing on a singly reflected beam using sparse antenna arrays and 3D echosignal processing, Russ. J. Nondestr. Test., 2016, vol. 52, no. 1, pp. 1–13.

    Article  Google Scholar 

  10. Hu, H., Du, J., Ye, C., and Li, X., Ultrasonic phased array sparse-TFM imaging based on sparse array optimization and new edge-directed interpolation, Sensors, 2018, vol. 18, no. 6, p. 1830.

    Article  Google Scholar 

  11. Yang, P., Chen, B., and Shi, K.R., Novel method to design sparse linear arrays for ultrasonic phased array, Ultrasonics, 2006, vol. 44, pp. e717–e721.

    Article  Google Scholar 

  12. de Souza, J.C.E., Parrilla Romero, M., Higuti, R.T., and Martínez-Graullera, O., Design of ultrasonic synthetic aperture imaging systems based on a non-grid 2D sparse array, Sensors, 2021, vol. 21, no. 23, p. 8001.

    Article  Google Scholar 

  13. Martínez-Graullera, O., de Souza, J.C.E., Parrilla Romero, M., and Higuti, R.T., Design of 2D planar sparse binned arrays based on the coarray analysis, Sensors, 2021, vol. 21, no. 23, p. 8018.

    Article  Google Scholar 

  14. Ramalli, A., Boni, E., Savoia, A.S., and Tortoli, P., Density-tapered spiral arrays for ultrasound 3-D imaging, IEEE Trans. Ultrason. Ferroelectr. Freq. Cont., 2015, vol. 62, no. 8, pp. 1580–1588.

    Article  Google Scholar 

  15. Skjelvareid, M.H., Olofsson, T., Birkelund, Y., and Larsen, Y., Synthetic aperture focusing of ultrasonic data from multilayered media using an omega-k algorithm, IEEE Trans. Ultrason. Ferroelectr. Freq. Cont., 2011, vol. 58, no. 5, pp. 1037–1048.

    Article  Google Scholar 

  16. Hunter, A.J., Drinkwater, B.W., and Wilcox, P.D., The wavenumber algorithm for full-matrix imaging using an ultrasonic array, IEEE Trans. Ultrason. Eng., 2008, vol. 55, no. 11, pp. 2450–2462.

    Article  Google Scholar 

  17. Dolmatov, D.O., Sednev, D.A., Bulavinov, A.N., and Pinchuk, R.V., Applying the algorithm of calculation in the frequency domain to ultrasonic tomography of layered inhomogeneous media using matrix antenna arrays, Russ. J. Nondestr. Test., 2019, vol. 55, no. 7, pp. 499–506.

    Article  Google Scholar 

  18. Capozzoli, A., Curcio, C., and Liseno, A., Optimized nonuniform FFTs and their application to array factor computation, IEEE Trans. Antennas Propag., 2018, vol. 67, no. 6, pp. 3924–3938.

    Article  Google Scholar 

  19. Moreau, L., Drinkwater, B.W., and Wilcox, P.D., Ultrasonic imaging algorithms with limited transmission cycles for rapid nondestructive evaluation, IEEE Trans. Ultrason. Ferroelectr. Freq. Cont., 2009, vol. 56, no. 9, pp. 1932–1944.

    Article  Google Scholar 

  20. Bannouf, S., Robert, S., Casula, O., and Prada, C., Data set reduction for ultrasonic TFM imaging using the effective aperture approach and virtual sources, J. Phys. Conf. Ser., 2013, vol. 457, no. 1, p. 012007.

    Article  Google Scholar 

  21. Hu, H., Du, J., Xu, N., Jeong, H., and Wang, X., Ultrasonic sparse-TFM imaging for a two-layer medium using genetic algorithm optimization and effective aperture correction, NDT & E Int., 2017, vol. 90, pp. 24–32.

    Article  Google Scholar 

  22. Dolmatov, D.O., Ermoshin, N.I., Koneva, D.A., and Sednev, D.A., Application of nonuniform Fourier transform to solving ultrasonic tomography problems with antenna arrays, Russ. J. Nondestr. Test., 2020, vol. 56, no. 8, pp. 603–610.

    Article  Google Scholar 

  23. Martínez-Graullera, O., Martín, C.J., Godoy, G., and Ullate, L.G., 2D array design based on Fermat spiral for ultrasound imaging, Ultrasonics, 2010, vol. 50, no. 2, pp. 280–289.

    Article  Google Scholar 

  24. Velichko, A. and Wilcox, P.D., Characterisation of complex defects using two-dimensional ultrasonic arrays, Proc. ECNDT, 2010, vol. 1, p. 18.

  25. Bridson, R., Fast Poisson disk sampling in arbitrary dimensions, Spec. Interest Group Comput. Graphics Interact. Tech. Conf. (San Diego, 2007).

  26. Greengard, L. and Lee, J.Y., Accelerating the nonuniform fast Fourier transform, SIAM Rev., 2004, vol. 46, no. 3, pp. 443–454.

    Article  Google Scholar 

  27. Fan, C., Caleap, M., Pan, M., and Drinkwater, B.W., A comparison between ultrasonic array beamforming and super resolution imaging algorithms for non-destructive evaluation, Ultrasonics, 2014, vol. 54, no. 7, pp. 1842–1850.

    Article  Google Scholar 

  28. Zhang, J., Drinkwater, B.W., Wilcox, P.D., and Hunter, A.J., Defect detection using ultrasonic arrays: The multi-mode total focusing method, NDT & E Int., 2010, vol. 43, pp. 123–133.

    Article  Google Scholar 

  29. Dolmatov, D.O., Tarrazó-Serrano, D., Filippov, G.A., Uris, A., and Sednev, D.A., Application of phase-reversal fresnel zone plates for high-resolution robotic ultrasonic non-destructive evaluation, Sensors, 2021, vol. 21, no. 23, p. 7792.

    Article  Google Scholar 

  30. Kvasnikov, K.G., Soldatov, A.I., Bolotina, I.O., Krening, K.M., and Potapenko, A.A., The use of geometrical acoustics for the solution of visualization problems, Russ. J. Nondestr. Test., 2013, vol. 49, no. 11, pp. 625–630.

    Article  Google Scholar 

Download references

Funding

The research was supported by a grant of the President of the Russian Federation for the state support of young Russian scientists—Candidates and Doctors of Sciences, project no. MK-1679.2022.4.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. O. Dolmatov or N. I. Ermoshin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolmatov, D.O., Ermoshin, N.I. Digital Coherent Signal Processing with Calculations in Frequency Domain for Solving Ultrasound Tomography Problems Using Matrix Antenna Arrays with Nonequidistant Arrangement of Elements. Russ J Nondestruct Test 58, 869–881 (2022). https://doi.org/10.1134/S1061830922600812

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830922600812

Keywords:

Navigation