Skip to main content
Log in

Simulation and Implementation of a High Sensitive Differential Eddy Current Giant Magnetoresistance Probe for Non-Destructive Testing

  • ELECTROMAGNETIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

This paper presents the design and implementation of a high-sensitivity eddy current (EC) sensor based on giant magnetoresistance (GMR) to assess cracks in conductive materials. This approach’s originality uses two symmetrical giant magnetoresistance sensors in a differential configuration using commercial GMR elements inserted on a coil in a ferrite pot. The background signal measured by the sensor is infinitesimal if there is no crack in the sample. Therefore, the designed sensor demonstrates a high sensitivity to the presence of cracks where the GMRs mounted in differential allow to reduce the background voltage’s impact. On the other hand, The GMR-based EC probe with a ferrite pot core is more sensitive to the presence of cracks than the conventional EC sensor without a ferrite pot core. This work introduces the notion of the GMR sensor’s effective area (EA) after being calculated and optimized using the inverse problem (particle swarm optimization method). The operation of the differential GMR sensor is validated using a 3D finite element model based on the (A, V–A) formulation and experimental measurements. The prototype of the differential GMR sensor is developed and tested. Experimental results are obtained to evaluate cracks machined on an aluminum standard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. Helifa, B., Oulhadj, A., Benbelghit, A., Lefkaier, I.K., Boubenider, F., and Boutassouna, D., Detection and measurement of surface cracks in ferromagnetic materials using eddy current testing, NDT & E Int., 2006, vol. 39, no. 5, pp. 384–390. https://doi.org/10.1016/j.ndteint.2005.11.004

    Article  CAS  Google Scholar 

  2. Hamia, R., Cordier, C., and Dolabdjian, C., Separability of multiple deep crack defects with an NDE eddy current system, IEEE Trans. Magn., 2013, vol. 49, no. 1, pp. 124–127. https://doi.org/10.1109/TMAG.2012.2218796

    Article  Google Scholar 

  3. Hamia, R., Cordier, C., Saez, S., and Dolabdjian, C., Eddy-current nondestructive testing using an improved GMR magnetometer and a single wire as inducer: A FEM performance analysis, IEEE Trans. Magn., 2010, vol. 46, no. 10, pp. 3731–3737. https://doi.org/10.1109/TMAG.2010.2052827

    Article  Google Scholar 

  4. Rifai, D., Abdalla, A., Ali, K., and Razali, R., Giant magnetoresistance sensors: A review on structures and non-destructive eddy current testing applications, Sensors, 2016, vol. 16, no. 3, p. 298. https://doi.org/10.3390/s16030298

    Article  Google Scholar 

  5. Postolache, O., Ribeiro, A.L., and Ramos, H.G., GMR array uniform eddy current probe for defect detection in conductive specimens, Measurement, 2013, vol. 46, no. 10, pp. 4369–4378. https://doi.org/10.1016/j.measurement.2013.06.050

    Article  Google Scholar 

  6. Bernieri, A., Ferrigno, L., Laracca, M., and Rasile, A., Eddy current testing probe based on double-coil excitation and GMR sensor, IEEE Trans. Instrum. Meas., 2019, vol. 68, no. 5, pp. 1533–1542. https://doi.org/10.1109/TIM.2018.2890757

    Article  Google Scholar 

  7. Kim, J., Yang, G., Udpa, L., and Udpa, S., Classification of pulsed eddy current GMR data on aircraft structures, NDT & E Int., 2010, vol. 43, no. 2, pp. 141–144. https://doi.org/10.1016/j.ndteint.2009.10.003

    Article  CAS  Google Scholar 

  8. Smith, C.H., Eddy-current testing with GMR magnetic sensor arrays, AIP Conf. Proc. (Green Bay, Wisconsin (USA), 2004), vol. 700, pp. 406–413. https://doi.org/10.1063/1.1711651

  9. Zorni, C., Contrôle non destructif par courants de Foucault de milieux ferromagnétiques: de l’expérience au modèle d’interaction, p. 120.

  10. Reimund, V., Pelkner, M., Kreutzbruck, M., and Haueisen, J., Sensitivity analysis of the non-destructive evaluation_of micro-cracks using GMR sensors, NDT & E Int., 2014, vol. 64, pp. 21–29. https://doi.org/10.1016/j.ndteint.2014.02.003

    Article  Google Scholar 

  11. Dogaru, T. and Smith, S.T., Giant magnetoresistance-based eddy-current sensor, IEEE Trans. Magn., 2001, vol. 37, no. 5, pp. 3831–3838. https://doi.org/10.1109/20.952754

    Article  Google Scholar 

  12. Yin, W. et al., Custom edge-element FEM solver and its application to eddy-current simulation of realistic 2M-element human brain phantom: Applications of a custom FEM solver, Bioelectromagnetics, 2018, vol. 39, no. 8, pp. 604–616. https://doi.org/10.1002/bem.22148

    Article  CAS  Google Scholar 

  13. Yin, W. et al., An equivalent-effect phenomenon in eddy current non-destructive testing of thin structures, IEEE Access, 2019, vol. 7, pp. 70296–70307. https://doi.org/10.1109/ACCESS.2019.2916980

  14. Lu, M., Peyton, A., and Yin, W., Acceleration of frequency sweeping in eddy-current computation, IEEE Trans. Magn., 2017, vol. 53, no. 7, pp. 1–8. https://doi.org/10.1109/TMAG.2017.2688326

    Article  Google Scholar 

  15. Gao, P., Wang, X., Han, D., and Zhang, Q., Eddy current testing for weld defects with different directions of excitation field of rectangular coil, in 2018 4th Int. Conf. Control Autom. Robotics (ICCAR) (Auckland, April 2018), pp. 486–491. https://doi.org/10.1109/ICCAR.2018.8384725

  16. Ramirez-Pacheco, E.J., Espina-Hernandez, H., Caleyo, F., and Hallen, J.M., Defect detection in aluminium with an eddy currents sensor, in 2010 IEEE Electron. Robotics Automotive Mech. Conf. (Cuernavaca, Mexico, September 2010), pp. 765–770. https://doi.org/10.1109/CERMA.2010.91

  17. Romero-Arismendi, N.O., Pérez-Benítez, J.A., Ramírez-Pacheco, E., and Espina-Hernández, J.H., Design method for a GMR-based eddy current sensor with optimal sensitivity, Sens. Actuators, A, 2020, vol. 314, p. 112348. https://doi.org/10.1016/j.sna.2020.112348

    Article  CAS  Google Scholar 

  18. Helifa, B., Féliachi, M., Lefkaier, I.K., Boubenider, F., Zaoui, A., and Lagraa, N., Characterization of surface cracks using eddy current NDT simulation by 3D-FEM and inversion by neural network, Mater. Sci., 2016, vol. 31, no. 2, p. 9.

    Google Scholar 

  19. Available online at https://www.nve.com/Downloads/catalog.pdf. Accessed January 4, 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalal Radia Touil.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Touil, D.R., Lahrech, A.C., Helifa, B. et al. Simulation and Implementation of a High Sensitive Differential Eddy Current Giant Magnetoresistance Probe for Non-Destructive Testing. Russ J Nondestruct Test 58, 833–846 (2022). https://doi.org/10.1134/S1061830922090029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830922090029

Keywords:

Navigation