Skip to main content
Log in

Comparative Sensitivity of Informative Parameters of Electromagnetic-Acoustic Mirror-Shadow Multiple Reflections Method during Bar Stock Testing

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

We present the results of comparing the defect sensitivity of various informative parameters of signals obtained during the implementation of the electromagnetic-acoustic mirror-shadow multiple reflections method. It is proposed to use statistical parameters of signals in the time and spectral domains as informative parameters. The unambiguous connection of the majority of informative parameters with a generalized defect characteristic defined as the product of the defect depth by its diameter is shown. The possibility of evaluating the generalized characteristic for the identified natural defects of bar rolled products is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Filippov, A.A., Pachurin, G.V., Kuzmin, N.A., Nuzhdina, T.V., and Goncharova, D.A., Preparation of structural-mechanical properties of pearlitic steels for cold forming, Remont. Vosstanovleniye. Modernizatsiya., 2019, no. 11, pp. 38–42. https://doi.org/10.31044/1684-2561-2019-0-11-38-42

  2. Filippov, A.A., Pachurin, G.V., Kuz’min, N.A., Matveev, Yu.I., and Deev, V.B., Quality of rolled steel for cold bulk stamping, Steel in Transl., 2018, vol. 48, no. 7, pp. 430–434. https://doi.org/10.3103/S0967091218070070

    Article  Google Scholar 

  3. Naumenko, V.V., Muntin, A.V., Danilenko, A.V., and Baranova, O.A. Study of the Surface Defect Nature of Hot-Rolled Products in the Edge Zone, Steel in Transl., 2020, vol. 50, no. 1, pp. 46–52. https://doi.org/10.3103/S0967091220010088

  4. Zhukov, D.V. and Belov, M.L., Methods for detecting specific defects in steels with high machinability by cutting, Stal’, 2018, no. 8, pp. 37–39.

  5. Ding, H., Zhang, A.B., Qi, D.T., Li, H.B., Qi, G.Q., Ding, N., Bai, Z.Q., Fan, L., and Ge, P.L., Failure analysis of a sucker rod fracture in an oilfield, Eng. Failure Anal., 2020, vol. 109, p. 104300. https://doi.org/10.1016/j.engfailanal.2019.104300

    Article  Google Scholar 

  6. Khlybov, O.S., Khrameshin, D.V., and Kabakov, Z.K., Diagnostic and automatic adjustment algorithms for a nondestructive statistical monitoring system for the mechanical properties of hot-rolled metal stock, Metallurgist, 2018, vol. 62, pp. 627–633. https://doi.org/10.1007/s11015-018-0701-3

    Article  Google Scholar 

  7. Bida, G.V., Nondestructive testing of mechanical properties of rolled steel (a review): 2. Testing of ductile properties, Russ. J. Nondestr. Test., 2005, vol. 41, no. 5, pp. 307–323.

    Article  CAS  Google Scholar 

  8. Duminova, N.S., Kornilov, V.L., Urtsev, V.N., Voronkov, S.N., and Sidorenko, N.S., Certification of Mill 5000 (PJSC “MMK”) rolled flat products by nondestructive control methods, Metallurgist, 2019, vol. 62, nos. 11–12, pp. 1219–1224. https://doi.org/10.1007/s11015-019-00777-z

    Article  CAS  Google Scholar 

  9. Dimkin, G.Y., Shevelev, A.V., Kurkov, A.V., and Smorodinskii, Y.G., On the sensitivity of eddy current testing of parts of railway rolling stock, Russ. J. Nondestr. Test., 2019, vol. 55, no. 8, pp. 610–616. https://doi.org/10.1134/S1061830919080059

    Article  Google Scholar 

  10. Shejuan, X., Mingming, T., Pan, X., Cuixiang, P., Zhenmao, C., and Toshiyuki, T., A hybrid nondestructive testing method of pulsed eddy current testing and electromagnetic acoustic transducer techniques for simultaneous surface and volumetric defects inspection, NDT & E Int., 2017, vol. 86, pp. 153–163. https://doi.org/10.1016/j.ndteint.2016.12.006

    Article  CAS  Google Scholar 

  11. Zima, B. and Rucka, M., Guided ultrasonic waves for detection of debonding in bars partially embedded in grout, Constr. Build. Mater., 2018, vol. 168, pp. 124–142. https://doi.org/10.1016/j.conbuildmat.2018.02.107

    Article  Google Scholar 

  12. Saravanan, T.J., Elastic wave methods for non-destructive damage diagnosis in the axisymmetric viscoelastic cylindrical waveguide, Measurement, 2021, vol. 177, p. 109253. https://doi.org/10.1016/j.measurement.2021.109253

    Article  Google Scholar 

  13. Alves, M., Melo, M., Medeiros, L.H., Novo, L., Barbosa, D., Coutinho, M., Tarragô, V., Santos, R., Neto, H., and Gama, P., Nondestructive technique for fault locating on anchor rods by reflectometry, SBMO/IEEE MTT-S Int. Microwave Optoelectron. Conf. (IMOC) (Fortaleza, 2021), pp. 1–3. https://doi.org/10.1109/IMOC53012.2021.9624761

  14. Majhi, S., Mukherjee, A., George, N.V., and Uy, B., Corrosion detection in steel bar: a time-frequency approach, NDT & E Int., 2019, vol. 107, p. 102150. https://doi.org/10.1016/j.ndteint.2019.102150

    Article  Google Scholar 

  15. Zhao, J., Durham, N., Abdel-Hadi, K., McKenzie, C.A., and Thomson, D.J., Acoustic guided wave techniques for detecting corrosion damage of electrical grounding rods, Measurement, 2019, vol. 147, p. 106858. https://doi.org/10.1016/j.measurement.2019.106858

    Article  Google Scholar 

  16. Li, Z., Wang, Y., Zheng, J., Liu, N., Li, M., and Teng, J., Stress measurement for steel slender waveguides based on the nonlinear relation between guided wave group velocity and stress, Measurement, 2021, vol. 179, p. 109465. https://doi.org/10.1016/j.measurement.2021.109465

    Article  Google Scholar 

  17. Strizhak, V.A., Khasanov, R.R., and Pryakhin, A.V., Features of excitation of an electromagnetic acoustic transducer under a waveguide method of testing, Vestnik IzhGTU imeni M.T. Kalashnikova, 2018, vol. 21, no. 2, pp. 159–166. https://doi.org/10.22213/2413-1172-2018-2-159-166

    Article  Google Scholar 

  18. Hirao, M. and Ogi, H., Electromagnetic Acoustic Transducers: Noncontacting Ultrasonic Measurements Using EMATs, Tokyo: Springer Japan, 2017.

    Book  Google Scholar 

  19. Aleshin, N.P., Kris’ko, N.V., Kusii, A.G., Skrinnikov, S.V., Mogil’ner, L.Yu., Investigating the detectability of surface volumetric defects in ultrasonic testing with the use of Rayleigh waves generated by an electromagnetic-acoustic transducer, Russ. J. Nondestr. Test., 2021, vol. 57, no. 5, pp. 361–368. https://doi.org/10.1134/S1061830921050028

    Article  Google Scholar 

  20. Babkin, S.E., Definition of speed of the basic types acoustic waves in metals by means added sensor, Defektoskopiya, 2020, no. 4, pp. 32–39. https://doi.org/10.31857/S0130308220040041

  21. Murav’eva, O., Murav’ev, V., Volkova, L., Kazantseva, N., Nichipuruk, A., and Stashkov, A., Acoustic properties of low-carbon 2% Mn-doped steel manufactured by laser powder bed fusion technology, Addit. Manuf., 2022, vol. 51, p. 102635. https://doi.org/10.1016/j.addma.2022.102635

    Article  CAS  Google Scholar 

  22. He, C., Deng, P., Lu, Y., Liu, X., Liu, Z., Jiao, J., and Wu, B., Estimation of surface crack depth using Rayleigh waves by electromagnetic acoustic transducers, Int. J. Acoust. Vib., 2017, vol. 22, no. 4, pp. 541–548. https://doi.org/10.20855/ijav.2017.22.4501

    Article  Google Scholar 

  23. Wang, P., Zhang, Y., Yao, E., Mi, Y., Zheng, Y., and Tang, Ch., Method of measuring the mechanical properties of ferromagnetic materials based on magnetostrictive EMAT characteristic parameters, Measurement, 2021, vol. 168, p. 108187. https://doi.org/10.1016/j.measurement.2020.108187

    Article  Google Scholar 

  24. Cong, M., Wu, X., and Qian, C., A longitudinal mode electromagnetic acoustic transducer (EMAT) based on a permanent magnet chain for pipe inspection, Sensors, 2016, vol. 16, no. 5, p. 740. https://doi.org/10.3390/s16050740

    Article  Google Scholar 

  25. Dehui, W., Jiaxin, Y., Wenxiong, Ch., and Teng, W., An electromagnetic acoustic transducer with electromagnetic pulse restraining, Insight Nondestr. Test. Cond. Monit., 2021, vol. 63, pp. 111–117. https://doi.org/10.1784/insi.2021.63.2.111

    Article  CAS  Google Scholar 

  26. Petrov, K.V., Sokov, M.Yu., and Murav’eva, O.V., The effect of electromagnetic acoustic transducer design features on results of cylinder object testing, Vestnik IzhGTU imeni M.T. Kalashnikova, 2018, vol. 21, no. 2, pp. 135–146. https://doi.org/10.22213/2413-1172-2018-2-135-146

  27. Muraveva O. V., Murav'ev V. V., Basharova A. F., Sintsov M.A., Bogdan O.P. Thermal treatment effect and structural state of rod-shaped assortment 40Kh steel on the speed of ultrasound waves and poisson coefficient, Steel in Transl., 2020, vol. 50, no 8, pp. 579–584. https://doi.org/10.3103/S0967091220080082

  28. Murav’eva, O.V. and Zorin, V.A., The multiple shadow method applied to testing cylindrical objects with Rayleigh waves, Russ. J. Nondestr. Test., 2017, vol. 53, no. 5, pp. 337–342. https://doi.org/10.1134/S1061830917050059

    Article  Google Scholar 

  29. Murav'ev, V.V., Murav’eva, O.V., Budrin, A.Yu., Sintsov, M.A., and Zorin, A.V., Acoustic structural analysis of steel samples loaded with rotational bending during fatigue tests, Vestnik IzhGTU imeni M.T. Kalashnikova, 2019, vol. 22, no. 1, pp. 37–44. https://doi.org/10.22213/2413-1172-2019-1-37-44

  30. Klyuev, V.V., Nerazrushayuschii kontrol’. T. 3. Ul’trazvukovoi kontrol’ (Nondestructive Testing. Vol. 3. Ultrasonic Testing), Moscow: Mashinostroenie, 2004.

  31. Kachanov, V.K., Sokolov, I.V., Pervushin, V.V., and Timofeev, D.V., Structure analysis of products made of polymer materials using instantaneous spectra of ultrasonic signals, Russ. J. Nondestr. Test., 2019, vol. 55, no. 6, pp. 427–433. https://doi.org/10.1134/S1061830919060056

    Article  Google Scholar 

  32. Suchkov, G.M., Migushchenko, R.P., Kropachek, O.Yu., Plesnetsov, S.Yu., Bilyk, Z.V., Khoroshailo, Yu.E., Efimenko, S.A., and Salam, B., Nonсontact spectral express method for detecting corrosion damage to metal products, Russ. J. Nondestr. Test., 2020, vol. 56, no. 1, pp. 12–19. https://doi.org/10.1134/S1061830920010118

    Article  Google Scholar 

  33. Erofeev, V.I., Ilyakhinskii, A.V., Nikitina, E.A., Pakhomov, P.A., and Rodyushkin, V.M., Ultrasonic sensing method for evaluating the limit state of metal structures associated with the onset of plastic deformation, Phys. Mesomech., 2020, vol. 23, pp. 241–245. https://doi.org/10.1134/S102995992003008X

    Article  Google Scholar 

  34. Khlybov, A.A. and Uglov, A.L., On the Use of structural noise parameters in testing 20GL steel with Rayleigh surface waves under elastoplastic deformation, Russ. J. Nondestr. Test., 2021, vol. 57, no. 7, pp. 517–524. https://doi.org/10.1134/S1061830921070081

    Article  Google Scholar 

  35. Murav’ev, V.V., Murav’eva, O.V., and Bayteryakov, A.V., Structurally sensitive acoustic parameters of structural steels (Structural-Sensitive Acoustic Parameters of Structural Steels) Izhevsk: IzhGTU, 2020.

  36. Khlybov, A.A., Kabaldin, Yu.G., Anosov, M.S., Ryabov, D.A., Shatagin, D.A., and Kiselev, A.V., Estimation of possibilities of using fractal dimension and information entropy of elastic waves for assessment of damage to steel 20 at low cycle fatigue, Vestnik IzhGTU imeni M.T. Kalashnikova, 2021, vol. 24, no. 3, pp. 17–25. https://doi.org/10.22213/2413-1172-2021-3-17-25

  37. García-Gómez, J., Gil-Pita, R., Rosa-Zurera, M., Romero-Camacho, A., Jiménez-Garrido, J.A., and García- Benavides, V., Smart sound processing for defect sizing in pipelines using EMAT actuator based multi-frequency Lamb waves, Sensors, 2018, vol. 18, no. 3, p. 802. https://doi.org/10.3390/s18030802

    Article  Google Scholar 

  38. Bazulin, E.G. and Evseev, I.V., Applying plane wave imaging technology in ultrasonic nondestructive testing, Russ. J. Nondestr. Test., 2021, vol. 57, no. 6, pp. 423–436. https://doi.org/10.1134/S1061830921060048

    Article  Google Scholar 

  39. Potapov, A.I., Kondrat’ev, A.V., and Smorodinskii, Ya.G., Nondestructive testing of structurally inhomogeneous composite materials by the method of elastic-wave velocity hodograph, Russ. J. Nondetsr. Test., 2019, vol. 55, no. 6, pp. 434–442. https://doi.org/10.1134/S106183091906007X

    Article  Google Scholar 

  40. Sudheera, K., Nandhitha, N.M., V. Paineni Bhavagna Venkat Sai, and Nallamothu Vijay Kumar, Deep learning techniques for flaw characterization in weld pieces from ultrasonic signals, Russ. J. Nondestr. Test., 2020, vol. 56, no. 10, pp. 820–830. https://doi.org/10.31857/S013030822010005X

    Article  Google Scholar 

  41. Gao, X., Shi, Y., Du, K., Zhu, Q., and Zhang, W., Sparse blind deconvolution with nonconvex optimization for ultrasonic NDT application, Sensors, 2020, vol. 20, p. 6946. https://doi.org/10.3390/s20236946

    Article  Google Scholar 

  42. Shi, Y., Xu, W., Zhang, J., and Li, X., Automated Classification of Ultrasonic Signal via a Convolutional Neural Network, Appl. Sci., 2022, vol. 12, p. 4179. https://doi.org/10.3390/app12094179

    Article  CAS  Google Scholar 

  43. Murav’eva, O.V., Murav’ev, V.V., Gabbasova, M.A. Buldakova I.V. and Sokov M.Y. Analysis of reflected signals in testing cylindrical specimens by the multiple reflection echo-shadow method. Optoelectron. Instrument. Proc., 2016, vol. 52, no. 4, pp. 367–373 (2016). https://doi.org/10.3103/S8756699016040087

  44. Murav’ev, V.V., Murav’eva, O.V., Strizhak, V.A., Pryakhin, A.V., and Fokeeva, E.N., An analysis of the comparative reliability of acoustic testing methods of bar stock from spring steels, Russ. J. Nondestr. Test., 2014, vol. 50, no. 8, pp. 435–442. https://doi.org/10.1134/S1061830914080063

    Article  Google Scholar 

  45. Petrov, K.V., Murav’eva, O.V., Mishkin, Yu.V., and Basharova, A.F., Modeling magnetic, electric, and acoustic fields of a pass-through transducer when testing cylindrical objects, Russ. J. Nondestr. Test., 2019, no. 2, pp. 102–110.

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 22-19-00252, https://rscf.ru/project/22-19-00252/, and made use of the USI (Unique Scientific Installation) “Information and measurement complex for studying the acoustic properties of materials and products” (reg. no. 586308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Murav’eva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murav’eva, O.V., Brester, A.F. & Murav’ev, V.V. Comparative Sensitivity of Informative Parameters of Electromagnetic-Acoustic Mirror-Shadow Multiple Reflections Method during Bar Stock Testing. Russ J Nondestruct Test 58, 689–704 (2022). https://doi.org/10.1134/S1061830922080083

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830922080083

Keywords:

Navigation