Skip to main content
Log in

Increasing Penetrating Power of Digital Radiography Systems Based on Analysis of Low-Intensity Signals

  • X-RAY METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

A mathematical model of the formation of high-energy digital radiographic images in conditions of low levels of digital signals has been developed. The model is designed to increase the efficiency of the analyzed systems in relation to the testing of large-sized objects by virtue of digital summation of images. Based on the model, an algorithm and a MathCad program designed to simulate digital images of test objects have been developed. Based on the analysis of the results of computational and field experiments, the principal possibility of increasing the efficiency of high-energy digital radiography systems based on accounting for rare events is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Du Plessis, A., MacDonald, E., Waller, J.M., and Berto, F., Non-destructive testing of parts produced by laser powder bed fusion, Fundam. Laser Powder Bed Fusion Met., 2021, pp. 277–300. https://doi.org/10.1016/B978-0-12-824090-8.00016-0

  2. Bossema, F.G., Domínguez-Delmás, M., Palenstijn, W.J., Kostenko, A., Dorscheid, J., Coban, S.B., Hermens, E., and Batenburg, K.J., A novel method for dendrochronology of large historical wooden objects using line trajectory X-ray tomography, Sci. Rep., 2021, vol. 11, no. 1, pp. 1–12. https://doi.org/10.1038/s41598-021-90135-4

    Article  CAS  Google Scholar 

  3. Nyberg, J.V.E., MacGregor, D., Azaiez, F., Complementary methods: γ-beam techniques, X-ray fluorescence (XRF) and nuclear magnetic resonance (NMR), in Nuclear Physics for Cultural Heritage, Les Ulis: EDP Sci., 2021, pp. 37–53.

    Google Scholar 

  4. Karikh, V.P., Pevchenko, B.V., Kurbatov, A.V., Okhotnikov, A.A., and Skokov, A.A., Three-dimensional X-ray tomography of industrial objects with limited sizes of the recording screen, Russ. J. Nondestr. Test., 2021, vol. 57, no. 9, pp. 787–795. https://doi.org/10.1134/S1061830921090059

    Article  Google Scholar 

  5. Ewert, U., Current developments in digital radiography and computed tomography from nm to macro scale, Proc. 12th Eur. Conf. Nondestr. Test. (ECNDT 2018) (Gothenburg, 2018), pp. 11–15.

  6. Movafeghi, A., Mohammadzadeh, N., Yahaghi, E., Nekouei, J., Rostami, P., and Moradi, G., Defect detection of industrial radiography images of ammonia pipes by a sparse coding model, J. Nondestr. Eval., 2018, vol. 37, no. 1, pp. 1–7. https://doi.org/10.1007/s10921-017-0458-9

    Article  Google Scholar 

  7. Kaczmarek, Ł., Kozłowska, A., Maksimczuk, M., and Wejrzanowski, T., The use of X-ray computed microtomography for graptolite detection in rock based on core internal structure visualization, Acta Geol. Pol., 2017, vol. 67, no. 2, pp. 299–306. https://doi.org/10.1515/agp-2017-0010

    Article  CAS  Google Scholar 

  8. Udod, V.A., Osipov, S.P., and Wang, Y., Estimating the influence of quantum noises on the quality of material identification by the dual-energy method, Russ. J. Nondestr. Test., 2018, vol. 54, no. 8, pp. 585–600. https://doi.org/10.1134/S1061830918080077

    Article  Google Scholar 

  9. Li, L., Li, R., Zhang, S., Zhao, T., and Chen, Z., A dynamic material discrimination algorithm for dual MV energy X-ray digital radiography, Appl. Radiat. Isotopes, 2016, vol. 114, pp. 188–195. https://doi.org/10.1016/j.apradiso.2016.05.018

    Article  CAS  Google Scholar 

  10. Hall, C., Large-scale imaging on the Australian Synchrotron imaging and medical beamline (IMBL), Synchrotron Radiat. News, 2015, vol. 28, no. 5, pp. 24–29. https://doi.org/10.1080/08940886.2015.1080066

    Article  Google Scholar 

  11. Osipov, S.P., Chakhlov, S.V., Kairalapov, D.U., and Sirot’yan, E.V., Numerical modeling of radiographic images as the basis for correctly designing digital radiography systems of large-sized objects, Russ. J. Nondestr. Test., 2019, vol. 55, no. 2, pp. 136–149. https://doi.org/10.1134/S1061830919020050

    Article  Google Scholar 

  12. Busi, M., Kehl, C., Frisvad, J.R., and Olsen, U.L., Metal artifact reduction in spectral X-ray CT using spectral deep learning, J. Imaging, 2022, vol. 8, no. 3, p. 77. https://doi.org/10.3390/jimaging8030077

    Article  Google Scholar 

  13. Zeng, G.L., Photon starvation artifact reduction by shift-variant processing, IEEE Access, 2022, vol. 10, pp. 13633–13649. https://doi.org/10.1109/ACCESS.2022.3142775

    Article  Google Scholar 

  14. Morin, R.L. and Seibert, J.A., Considerations for selecting a digital radiography system, J. Am. Coll. Radiol., 2005, vol. 2, no. 3, pp. 287–290. https://doi.org/10.1016/j.jacr.2004.10.015

    Article  Google Scholar 

  15. Zolkin, A.L., Munister, V.D., Bogaevskaya, O.Y., Yumashev, A.V., and Kornetov, A.N., Promising directions of information technologies applications for improving of control and measuring devices in medical industry, J. Phys. Conf. Ser., 2021, vol. 2094, no. 3, p. 032001. https://doi.org/10.1088/1742-6596/2094/3/032001

    Article  Google Scholar 

  16. Andriole, K.P., Medical imaging modalities and digital images, in Practical Imaging Informatics, New York: Springer, 2021, pp. 25–39. https://doi.org/10.1007/978-1-0716-1756-4_3

  17. Beckmann, M., Bhandari, A., and Krahmer, F., The modulo radon transform: theory, algorithms, and applications, SIAM J. Imaging Sci., 2022, vol. 15, no. 2, pp. 455–490. https://doi.org/10.1137/21M1424615

    Article  Google Scholar 

  18. Osipov, S.P., Usachev, E.J., Chakhlov, S.V., Schetinkin, S.A., and Osipov, O.S., Inspection of bulk cargoes and liquids by the dual energy method, Radiat. Phys. Chem., 2020, vol. 177, p. 109133. https://doi.org/10.1016/j.radphyschem.2020.109133

    Article  CAS  Google Scholar 

  19. Berger, M.J., Hubbell, J.H., Seltzer, S.M., Chang, J., Coursey, J.S., Sukumar, R., Zucker, D.S., and Olsen, K., XCOM: Photon cross sections database, NIST standard reference database 8 (XGAM). https://doi.org/10.18434/T48G6X

  20. Petrushanskii, M.G. and Kornev, E.A., On determination of the effective energy of a mixed X-ray beam, Biomed. Eng., 2006, vol. 40, no. 2, pp. 102–105. https://doi.org/10.1007/s10527-006-0054-2

    Article  Google Scholar 

  21. Zhang, D., Lai, W., Wu, J., Du, H., Zhao, R., and Fan, S., Establishment of ISO 4037-1 X-ray narrow-spectrum series, J. Eng., 2019, vol. 2019, no. 23, pp. 8858–8861. https://doi.org/10.1049/joe.2018.9126

    Article  Google Scholar 

  22. Zav’yalkin, F.M. and Osipov, S.P., Dependence of the mean value and fluctuations of the absorbed energy on the scintillator dimensions, Sov. At. Energy, 1985, vol. 59, no. 4, pp. 842–846. https://doi.org/10.1007/BF01123317

    Article  Google Scholar 

  23. Barbiero, A. and Ferrari, P.A., Simulation of correlated Poisson variables, Appl. Stochastic Models Bus. Ind., 2015, vol. 31, no. 5, pp. 669–680. https://doi.org/10.1002/asmb.2072

    Article  Google Scholar 

  24. Zhao, N. and Chen, X., Exploring the integration of MathCad-assisted mathematics experiments into higher mathematics teaching, Comput.-Aided Des. Appl., 2022, vol. 19, no. S1, pp. 117–127. https://doi.org/10.14733/cadaps.2022.S1.117-127

    Article  Google Scholar 

  25. Sarantites, D.G. and Sobotka, L.G., Computational templates for introductory nuclear science using MathCad, Am. J. Phys., 2013, vol. 81, no. 1, pp. 44–49. https://doi.org/10.1119/1.4764079

    Article  CAS  Google Scholar 

  26. Chang, J., Soldatov, A., Sorokin, P., Kostina, M., Soldatov, A., Xu, S., and Chiriev, A., Gaussian filtered smallangle ultrasonic computed tomography using linear arrays, Progress Mater. Sci. Eng., 2021, pp. 29–38. https://doi.org/10.1007/978-3-030-68103-6_3

  27. Kutsaev, S., Agustsson, R., Arodzero, A., Boucher, S., Hartzell, J., Murokh A., O’Shea, and Smirnov, A.Y., Electron accelerators for novel cargo inspection methods, Phys. Procedia, 2017, vol. 90, pp. 115–125. https://doi.org/10.1016/j.phpro.2017.09.036

    Article  CAS  Google Scholar 

  28. Graham, C. and Talay, D., Strong law of large numbers and Monte Carlo methods, in Stochastic Simulation and Monte Carlo Methods, Berlin: Springer, 2013, pp. 13–35. https://doi.org/10.1007/978-3-642-39363-1_2

  29. Kutsaev, S.V., Advanced technologies for applied particle accelerators and examples of their use, Techn. Phys., 2021, vol. 66, no. 2, pp. 161–195. https://doi.org/10.1134/S1063784221020158

    Article  CAS  Google Scholar 

  30. Schiff, L.I., Nonlinear meson theory of nuclear forces. II. Nonlinearity in the meson-nucleon coupling, Phys. Rev., 1951, vol. 84, no. 1, pp. 252–253. https://doi.org/10.1103/PhysRev.84.10

    Article  Google Scholar 

  31. Khasanov, S., Suleymanov, R., Safarov, A., Safarov, A., Tedila, H.M., and Muratov, R., Calculation of exposure and absorbed dose at irradiation samples by electron bremsstrahlung, Radiat. Phys. Chem., 2021, vol. 188, p. 109651. https://doi.org/10.1016/j.radphyschem.2021.109651

    Article  CAS  Google Scholar 

  32. Scientific educational cargo vehicle inspection system. http://portal.tpu.ru/departments/laboratory/rknl/eng/ products/iDK. Cited April 27, 2022

  33. ANSI N42.46. American national standard for determination of the imaging performance of X-ray and gamma-ray systems for cargo and vehicle security screening, 2008.

  34. Osipov, S.P., Yadrenkin, I.G., Chakhlov, S.V., Osipov, O.S., and Usachev, E.Y., Simulation modeling in digital radiography with allowance for spatial outlines of test objects, Russ. J. Nondestr. Test., 2020, vol. 56, no. 8, pp. 647–660. https://doi.org/10.1134/S1061830920080082

    Article  Google Scholar 

Download references

Funding

The work was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation within the framework of the State Task “Science,” project no. FSWW-2020-0014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Yu. Zhvyrblya, S. P. Osipov or D. A. Sednev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhvyrblya, V.Y., Osipov, S.P. & Sednev, D.A. Increasing Penetrating Power of Digital Radiography Systems Based on Analysis of Low-Intensity Signals. Russ J Nondestruct Test 58, 583–597 (2022). https://doi.org/10.1134/S1061830922070129

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830922070129

Keywords:

Navigation