Skip to main content
Log in

Influence of Destabilizing Factors on Results of Thermoelectric Testing

  • ELECTROMAGNETIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The results of studying the effect of the transient resistance of contacts on the result of differential thermoelectric testing are presented. The principle of the differential testing method with two hot electrodes and one heating system, as well as the design of such a sensor is demonstrated. The rationale for the formation of a multipoint contact and an equivalent sensor circuit corresponding to the multipoint contact are given. The influence of contact resistance on the testing result is investigated both on the model and experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig.12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Carreon, H., Thermoelectric detection of spherical tin inclusions in copper by magnetic sensing, J. Appl. Phys., 2000, vol. 88, no. 11, p. 6495. https://doi.org/10.1063/1.1322591

    Article  CAS  Google Scholar 

  2. Carreon, H., Thermoelectric nondestructive evaluation of residual stress in shot-peened metals, Res. Nondestr. Eval., 2002, vol. 14, no. 2, p. 59. https://doi.org/10.1080/09349840209409705

    Article  Google Scholar 

  3. Nagy, P.B., Non-destructive methods for materials’ state awareness monitoring, Insight Nondestr. Test. Cond. Monit., 2010, vol. 52, no. 2, p. 61. https://doi.org/10.1784/insi.2010.52.2.61

    Article  CAS  Google Scholar 

  4. Soldatov, A.A., Seleznev, A.I., Fiks, I.I., Soldatov, A.I., and Kröning, Kh.M., Nondestructive proximate testing of plastic deformations by differential thermal EMF measurements, Russ. J. Nondestr. Test., 2012, vol. 48, no. 3, pp. 184–186. https://doi.org/10.1134/S1061830915020084

  5. Li, J.F., Liu, W.S., Zhao, L.D., and Zhou, M., High-performance nanostructured thermoelectric materials, NPG Asia Mater., 2010, vol. 2, no. 4, p. 152. https://doi.org/10.1038/asiamat.2010.138

    Article  Google Scholar 

  6. Kikuchi, M., Dental alloy sorting by the thermoelectric method, Eur. J. Dent., 2010, vol. 4, no. 1, pp. 66–70.

    Article  Google Scholar 

  7. Cooper, R.F., Sorting mixed metals by the thermoelectric effect, Phys. Educ., 1976, vol. 11, no. 4, pp. 290–292. https://doi.org/10.1088/0031-9120/11/4/004

    Article  Google Scholar 

  8. Stuart, C.M., The Seebeck effect as used for the nondestructive evaluation of metals, Int. Adv. Nondestr. Test., 1983, vol. 9.

    Google Scholar 

  9. Stuart, C., Thermoelectric differences used for metal sorting, J. Test. Eval., 1987, vol. 15, no. 4, pp. 224–230. https://doi.org/10.1520/JTE11013J

    Article  CAS  Google Scholar 

  10. Dragunov, V.K. and Goncharov, A.L., New approaches to the rational manufacturing of combined constructions by EBW, IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 681, p. 012010. https://doi.org/10.1088/1757-899X/681/1/012010

  11. Goncharov, A., Sliva, A., Kharitonov, I., Chulkova, A., and Terentyev, E., Research of thermoelectric effects and their influence on electron beam in the process of welding of dissimilar steels, IOP Conf. Ser. Mater. Sci. Eng., 2020, vol. 759, no. 1, p. 012008. https://doi.org/10.1088/1757-899X/759/1/012008

  12. Kharitonov, I.A., Rodyakina, R.V., and Goncharov, A.L., Investigation of magnetic properties of various structural classes steels in weak magnetic fields characteristic for generation of thermoelectric currents in electron beam welding, Solid State Phenom., 2020, vol. 299, pp. 1201–1207.

    Article  Google Scholar 

  13. Soldatov, A.I., Soldatov, A.A., Kostina, M.A., and Kozhemyak, O.A., Experimental studies of thermoelectric characteristics of plastically deformed steels ST3, 08KP and 12H18N10T, Key Eng. Mater., 2016, vol. 685, pp. 310–314.

    Article  Google Scholar 

  14. Soldatov, A.I., Soldatov, A.A., Sorokin, P.V., Abouellail, A.A., Obach, I.I., Bortalevich, V.Y., Shinyakov, Y.A., and Sukhorukov, M.P., An experimental setup for studying electric characteristics of thermocouples, Proc. SIBCON 2017 (Astana, 2017), p. 79985342017.

  15. Fulton, J.P., Wincheski, B., and Namkung, M., Automated weld characterization using the thermoelectric method, Mater. Sci., 1993, p. 262902.

  16. Carreon, H. and Medina, A., Nondestructive characterization of the level of plastic deformation by thermoelectric power measurements in cold-rolled Ti–6Al–4V samples, Mater. Sci. Nondestr. Test. Eval., 2007, vol. 22, no. 4. https://doi.org/10.1080/10589750701546960

  17. Carreon, H., Detection of fretting damage in aerospace materials by thermoelectric means, Smart Struct. Eng. Phys. (San Diego, 2013), p. 86940Z. https://doi.org/10.1117/12.2009448

  18. Lakshminarayan, B., Carreon, H., and Nagy, P., Monitoring of the level of residual stress in surface treated specimens by a noncontacting thermoelectric technique, AIP Conf. Ser., 2003, vol. 657, no. 1. https://doi.org/10.1063/1.1570311

  19. Carreon, H., Evaluation of thermoelectric methods for the detection of fretting damage in 7075-T6 and Ti–6Al–4V alloys, Mater. Sci., 2015, vol. 2, pp. 435–442. https://doi.org/10.1007/978-3-319-48191-3_53

    Article  Google Scholar 

  20. Carreon, H., Barriuso, S., Barrera, G., González-Carrasco, J.L., and Caballero, F., Assessment of blasting induced effects on medical 316 LVM stainless steel by contacting and non-contacting thermoelectric power techniques, Mater. Sci., 2012, vol. 206, nos. 11–12, pp. 2941–2946. https://doi.org/10.1016/J.SURFCOAT.2011.12.026

    Article  CAS  Google Scholar 

  21. Hu, J. and Nagy, P.B., On the thermoelectric effect of interface imperfections, Rev. Prog. Quant. Nondestr. Eval., 1999, vol. 188, pp. 1487–1494. https://doi.org/10.1007/978-1-4615-4791-4_191

    Article  Google Scholar 

  22. Goncharov, A.L., Investigation of the thermal electromotive force of steels and alloys of different structural grades in electron beam welding, Weld. Int., 2011, vol. 25, no. 9, pp. 703–709.

    Article  Google Scholar 

  23. Goncharov, A.L., Chulkova, A.V., Rodyakina, R.V., Dragunov, V.K., and Chulkov, I.S., Investigation of thermo-EMF temperature dependences for construction materials of various structural classes, IOP Conf. Ser. Mater. Sci. Eng., 2019, vol. 681, p. 012017. https://doi.org/10.1088/1757-899X/681/1/012017

  24. Li, J.F., Liu, W.S., Zhao, L.D., and Zhou, M., High-performance nanostructured thermoelectric materials, NPG Asia Mater., 2010, vol. 2, pp. 152–158.

    Article  Google Scholar 

  25. Ritzer, T.M., Lau, P.G., and Bogard, A.D., A critical evaluation of today’s thermoelectric modules, Thermoelectrics, 1997, pp. 619–623. https://doi.org/10.1109/ICT.1997.667606

  26. Buist, R.J., A new method for testing thermoelectric materials and devices, 11-th Int. Conf. Thermoelectr. (Arlington, 1992).

  27. Ciylan Bünyamin and Yılmaz Sezayi, Design of a thermoelectric module test system using a novel test method, Int. J. Therm. Sci., 2007, vol. 46, no. 7, pp. 717–725. https://doi.org/10.1016/j.ijthermalsci.2006.10.008

    Article  CAS  Google Scholar 

  28. Soldatov, A.I., Soldatov, A.A., Sorokin, P.V., Loginov, E.L., Abouellail, A.A., Kozhemyak, O.A., and Bortalevich, S.I., Control system for device “thermotest,” 2016 Int. Sib. Conf. Control Commun. (SIBCON) (Moscow, 2016), p. 7491869. https://doi.org/10.1109/SIBCON.2016.7491869

  29. Soldatov, A.A., Dement’ev, A.A., Soldatov, A.I., and Vasil’ev, I.M., Control of quality of applying heat- conducting compound, Russ. J. Nondestr. Test., 2020, vol. 56, no. 3, pp. 284–290.

    Article  Google Scholar 

  30. Carreon Héctor, Thermoelectric detection of fretting damage in aerospace materials, Russ. J. Nondestr. Test., 2014, vol. 50, no. 11, pp. 684–692.

    Article  Google Scholar 

  31. Abouellail, A.A., Soldatov, A.A., Sorokin, P.V., Soldatov, A.I., and Khan, V., Investigation of the characteristics of thermoelectric EMF sources, Defektoskopiya, 2018, no. 7, pp. 54–60.

  32. Xuan, X.C., Ng, K.C., Yap, C., and Chua, H.T., A general model for studying effects of interface layers on thermoelectric devices performance, Int. J. Heat Mass Transfer, 2002, vol. 45, no. 26, pp. 5159–5170. https://doi.org/10.1016/S0017-9310(02)00217-X

    Article  Google Scholar 

  33. Hu, J. and Nagy, P.B., On the role of interface imperfections in thermoelectric nondestructive materials characterization, Appl. Phys. Lett., 1998, vol. 7, no. 4, p. 467. https://doi.org/10.1063/1.121902

    Article  Google Scholar 

  34. Sungtaek, Ju Y., Study of interface effects in thermoelectric microrefrigerators, J. Appl. Phys., 2000, vol. 88, no. 7, pp. 4135–4139. https://doi.org/10.1063/1.1289776

    Article  Google Scholar 

  35. Denisov, V.V., Soldatov, A.I., and Tsekhanovsky, S.A., The principle of measuring differential thermo EMF in the device “thermotest,” Tomsk MTT, Tomsk, 2005, p. 4493166, pp. 33–34.

  36. Whitehouse, D., Surfaces and Their Measurement, Boston: Butterworth-Heinemann, 2012.

    Google Scholar 

  37. Abouellail, A.A., Obach, I.I., Soldatov, A.A., and Soldatov, A.I., Surface inspection problems in thermoelectric testing, MATEC Web Conf., 2017, vol. 102, p. 01001. https://doi.org/10.1051/matecconf/201710201001

  38. Paul, E.M., Introduction to Nondestructive Testing: A Training Guide, New York: Wiley, 2005, 2nd ed.

    Google Scholar 

  39. Plotnikov, A.L., RF Patent no. 2117557, 1998.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. A. Abouellail, Ji. Chang, A. I. Soldatov, A. A. Soldatov, M. A. Kostina, S. I. Bortalevich or D. A. Soldatov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abouellail, A.A., Chang, J., Soldatov, A.I. et al. Influence of Destabilizing Factors on Results of Thermoelectric Testing. Russ J Nondestruct Test 58, 607–616 (2022). https://doi.org/10.1134/S1061830922070026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830922070026

Keywords:

Navigation