Skip to main content
Log in

Applying Compression Recognition Method to Achieve Superresolution of Echo Signals

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The possibility of using the method of compressive sensing (CS) to increase the resolution of echo signals is investigated. For comparison with the CS method, the maximum entropy (ME) method used in ultrasonic testing to achieve superresolution was also considered. In model experiments, the possibility of reconstructing images of reflectors with superresolution has been demonstrated making it possible to increase the accuracy of measuring reflectors and reduce the level of pattern noise. In order to reduce the noise level, it is proposed to use a coherence factor (CF) when combining partial images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Advances in Phased Array Ultrasonic Technology Applications, Waltham: Olympus NDT, 2007. http://www.olympus-ims.com/en/books/. Cited December 9, 2018.

  2. Voronkov, V.A., Voronkov, I.V., Kozlov, V.N., Samokrutov, A.A., and Shevaldykin, V.G., On the applicability of antenna array technology in ultrasonic testing of hazardous production facilities, V Mire NK, 2011, no. 1, pp. 64–70.

  3. Bazulin, E.G., Comparison of systems for ultrasonic nondestructive testing using antenna arrays or phased antenna arrays, Russ. J. Nondestr. Test., 2013, vol. 49, no. 7, pp. 404–423.

    Article  Google Scholar 

  4. Holmes, C., Drinkwater, B.W., and Wilcox, P.D., Post-processing of the full matrix of ultrasonic transmit–receive array data for non-destructive evaluation, NDT & E Int., 2005, vol. 38, no. 8, pp. 701–711.

    Article  CAS  Google Scholar 

  5. Kovalev, A.V., Kozlov, V.N., Samokrutov, A.A., Shevaldykin, V.G., and Yakovlev, N.N., Pulse echo method for testing concrete. Interference and spatial selection, Defektoskopiya, 1990, no. 2, pp. 29–41.

  6. Camacho, J., Parrilla, M., and Fritsch, C., Phase coherence imaging, IEEE Trans. Ultrason. Ferroelectr. Freq. Cont., 2009, vol. 56, no. 5, pp. 958–974.

    Article  Google Scholar 

  7. Bazulin, E.G., Two-dimensional adaptive extrapolation of the spectrum of multi-frequency acoustic holograms, Acoust. J., 1991, vol. 37, no. 1, pp. 8–16.

    Google Scholar 

  8. Marple Jr., S.L., Digital Spectral Analysis, Hoboken: Prentice Hall, 1987.

    Google Scholar 

  9. Bazulin, E.G., Increasing the signal-to-noise ratio during joint use of the spectrum extrapolation and splitting methods, Russ. J. Nondestr. Test., 2006, vol. 42, no. 1, pp. 51–59.

    Article  Google Scholar 

  10. Lavielle, M., Bayesian deconvolution of Bernoulli–Gaussian processes, Signal Proces., 1993, vol. 33, no. 1, pp. 67–79. https://doi.org/10.1016/0165-1684(93)90079-P

    Article  Google Scholar 

  11. Benammar, A., Drai, R., Kechida, A., and Guessoum, A., Deconvolution of ultrasonic echoes using Bernoulli- Gaussian processes for composite materials inspection, Int. J. Simul. Multidiscip. Des. Optim., 2008, vol. 2, pp. 107–111.

    Article  Google Scholar 

  12. Richardson, W.H., Bayesian-based iterative method of image restoration, J. Opt. Soc. Am., 1972, vol. 62, pp. 55–59.

    Article  Google Scholar 

  13. Dalitz, C., Pohle-Fronlich, R., and Michalk, T., Point spread functions and deconvolution of ultrasonic images, IEEE Trans. Ultrason. Ferroelectr. Freq. Cont., 2015, vol. 62, no. 3, pp. 531–544. https://doi.org/10.1109/TUFFC.2014.006717

    Article  Google Scholar 

  14. Ermolov, I.N., To the question of choosing the optimum parameters of the pulse-echo method in ultrasonic flaw detection, Defektoskopiya, 1965, no. 6, pp. 51–61.

  15. Bazulin, E., The maximum entropy method in ultrasonic non-destructive testing – increasing the resolution, image noise reduction and echo acquisition rate, Entropy, 2018, vol. 20, no. 8, p. 621. https://doi.org/10.3390/e20080621

    Article  Google Scholar 

  16. Borichin, O.N., Randomization of measurements and l1-optimization, Stokhast. Optim. Inf., 2009, no. 5, pp. 3–23.

  17. Donoho, D.L., Compressed sensing, IEEE Trans. Inf. Theory, 2006, pp. 1289–1306.

  18. Foucart, S. and Rauhut, H., A Mathematical Introduction to Compressive Sensing, Basel: Birkhäuser, 2013.

    Book  Google Scholar 

  19. Guarneri, G.A., Pipa, D.R., Junior, F.N., de Arruda, L.V.R., and Zibetti, M.V.W., A sparse reconstruction algorithm for ultrasonic images in nondestructive testing, Sensors, 2015, vol. 15, pp. 9324–9343.

    Article  Google Scholar 

  20. Minakov, E.I. and Seregin, P.S., Comparative analysis of methods of parallel reconstruction of magnetic resonance imaging images, Tsifrovaya Obrab. Sign., 2012, no. 3, pp. 23–28.

  21. Valente, S.A., Zibetti, M.V.W., Pipa, D.R., Maia, J.M., and Schneider, F.K., An assessment of iterative reconstruction methods for sparse ultrasound imaging, Sensors, 2017, vol. 17, p. 533. https://doi.org/10.3390/s17030533

    Article  Google Scholar 

  22. Provost, J. and Lesage, F., The application of compressed sensing for photo-acoustic tomography, IEEE Trans. Med. Imag., 2009, vol. 28, no. 4, pp. 585–594.

    Article  Google Scholar 

  23. Knee, P., Sparse representations for radar with MATLAB R examples, Synth. Lect. Algorithms Software Eng., 2012, vol. 4, no. 1, pp. 1–85.

    Article  Google Scholar 

  24. Shannon, C.R., A mathematical theory of communication, Bell Syst. Tech. J., 1948, vol. 27, pp. 379–423.

    Article  Google Scholar 

  25. Tikhonov, A.N. and Arsenin, V.Ya., Metodi resheniya nekorrektnikh zadach (Methods for Solving Ill-Posed Problems), Moscow: Nauka, 1986, 3rd ed.

  26. Kullback, S., Information Theory and Statistics, Mineola: Dover, 1968.

    Google Scholar 

  27. Bazulin, E.G., On the possibility of using the maximum entropy method in ultrasonic non-destructive testing to obtain an image of scatterers using a set of echo signals, Acoust. J., 2013, vol. 59, no. 2, pp. 235–254.

    Google Scholar 

  28. Candes, E.J., The restricted isometry property and its implications for compressed sensing, Comptes Rendus de l’Acad. des Sci. Serie I, 2008, vol. 346, p. 589592.

  29. Candes, E. and Wakin, M., People hearing without listening: An Introduction to Compressive Sampling, IEEE Sign. Proces. Mag., 2008, vol. 25, no. 2, pp. 21–30.

    Article  Google Scholar 

  30. Baraniuk, R.G., Davenport, M., DeVore, R., and Wakin, M.B., A simple proof of the restricted isometry principle for random matrices (aka the Johnson-Lindenstrauss lemma meets compressed sensing), Constr. Approximation, 2007, vol. 28, pp. 253–263.

    Article  Google Scholar 

  31. Bradley, E. and Hastie Trevor, Johnstone Yain Least angle regression. Stanford University, Ann. Stat., 2004, vol. 32, no. 2, pp. 407–499.

    Google Scholar 

  32. SPGL1: A solver for Large-Scale Sparse Reconstruction. https://www.cs.ubc.ca/~mpf/spgl1/index.html. Cited December 4, 2018.

  33. Bazulin, E.G. and Evseev, I.V., Reducing the noise level of the image of reflectors reconstructed from echo signals measured by an ultrasonic antenna array, XXVII mezhdunar. nauchno-tekh. konf. stud. aspirantov “Radioelektron. elektrotekh. energetika” (XVII Int. Sci. Tech. Conf. Stud. Postgraduates “Radioelectron. Electron. Power Eng.”) (MPEI, Moscow, March 11–12, 2021), p. 303.

  34. Official site of ECHO+ company. http://www.echoplus.ru. Cited January 22, 2022.

  35. Bazulin, E.G., The use of the inverse C-SAFT method for equalizing the spatial sensitivity of reflector images, Russ. J. Nondestr. Test., 2015, vol. 51, no. 2, pp. 108–119.

    Article  Google Scholar 

  36. Perona, P. and Malik, J., Scale space and edge detection using anisotropic diffusion, IEEE Trans. Pattern Anal. Mach. Intell., 1990, vol. 12, no. 6, pp. 629–639.

    Article  Google Scholar 

  37. Bazulin, E.G., Application of adaptive anisotropic diffusion filter to improve the reflector image quality when performing ultrasonic nondestructive testing, Russ. J. Nondestr. Test., 2021, no. 5, pp. 343–351.

  38. Bazulin, E.G. and Vovk, A.S., Application of the maximum entropy method in ultrasonic flaw detection with allowance for the variable shape of echo signal, Nauchn. Tr. MEI, 2018, no. 5, pp. 111–119.

  39. Bazulin, A.E. and Bazulin, E.G., Application of antenna arrays and organosilicon polymers as an immersion medium for ultrasonic testing of objects with rough surfaces, Russ. J. Nondestr. Test., 2014, vol. 50, no. 7, pp. 377–384.

    Article  CAS  Google Scholar 

  40. Fedorov, F.I., Teoriya uprugikh voln v kristallakh (Theory of Elastic Waves in Crystals), Moscow: Nauka, 1965.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Bazulin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazulin, E.G. Applying Compression Recognition Method to Achieve Superresolution of Echo Signals. Russ J Nondestruct Test 58, 342–354 (2022). https://doi.org/10.1134/S1061830922050023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830922050023

Keywords:

Navigation