Skip to main content
Log in

Features of Laser-Vibrometric Nondestructive Testing of Polymer Composite Materials Using Air-Coupled Ultrasonic Transducers

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Laser Doppler vibrometry has found application both in nondestructive testing (NDT) of polymer composite materials (PCMs) and in studies of the amplitude-frequency characteristics of acoustic emitters in a wide frequency range. The use of air-coupled systems for the excitation of acoustic vibrations in the tested objects makes it possible to carry out a non-contact NDT procedure. This expands testing facilities of composites, simplifies the quality control procedure, and minimizes external influences on the test objects in comparison with traditional acoustic NDT methods based on contact emitters. In this paper, we have investigated the features of NDT of composites by a non-contact method using scanning laser Doppler vibrometry. The results of NDT of impact damage to PCMs using several types of air-coupled systems for excitation of acoustic vibrations, namely, based on piezoelectric, magnetostrictive, and gas-discharge transducers are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. Yano, T., Tone, M., and Fukumoto, A., 1 MHz ultrasonic transducer operating in air, in Acoustical Imaging, Berkhout, A.J., Ridder, J., and van der Wal, L.F., Eds., Boston: Springer, 1985, pp. 575–584.

    Google Scholar 

  2. Schiller, S., Hsieh, C.K, Chou, C., and Khuri-Yakub, B., Novel high frequency air transducers, Review of Progress in Quantitative NDE, 1990.

  3. Hutchins, D.A. and Schindel, D.W., Advances in non-contact and air-coupled transducers, Proc. IEEE Ultrason. Symp., 1993, vol. 2, pp. 1245–1254. https://doi.org/10.1109/ULTSYM.1994.401811

    Article  Google Scholar 

  4. Chen, J., Wang, X., Yang, X., Zhang, L., and Wu, H., Application of air-coupled ultrasonic nondestructive testing in the measurement of elastic modulus of materials, Appl. Sci., 2021, vol. 11, no. 19, p. 9240. https://doi.org/10.3390/app11199240

    Article  CAS  Google Scholar 

  5. Adelegan, O.J., Coutant, Z.A., Wu, X., Yamaner, F.Y., and Oralkan, O., Design and fabrication of wideband air-coupled capacitive micromachined ultrasonic transducers with varying width annular-ring and spiral cell structures, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2021, vol. 68, no. 8, pp. 2749–2759. https://doi.org/10.1109/TUFFC.2021.3076143

    Article  Google Scholar 

  6. Bernhardt, Y. and Kreutzbruck, M., Integrated defect sensor for the inspection of fiber-reinforced plastics using air-coupled ultrasound, J. Sens. Sens. Syst., 2021, vol. 9, no. 1, pp. 127–132. https://doi.org/10.5194/jsss-9-127-2020

    Article  Google Scholar 

  7. Marhenke, T., Neuenschwander, J., Furrer, R., Zolliker, P., Twiefel, J., Hasener, J., Wallaschek, J., and Sanabria, S.J., Air-coupled ultrasound time reversal (acu-tr) for subwavelength nondestructive imaging, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2020, vol. 67, no. 3, pp. 651–663. https://doi.org/10.1109/TUFFC.2019.2951312

    Article  Google Scholar 

  8. Daschewski, M., Kreutzbruck, M., Prager, J., Dohse, E., Gaal, M., and Harrer, A., Resonanzfreie messung und anregung von ultraschall, Tech. Messen, 2015, vol. 82, no. 3, pp. 156–166.

    Article  CAS  Google Scholar 

  9. Gaal, M. and Kotschate, D., New technologies for air-coupled ultrasonic transducers, Proc. 12 th ECNDT Conf. (Gothenburg, 2018).

  10. Migachev, S.A., Kurkin, M.I., and Smorodinskii, Y.G., Noncontact excitation of sound in metals by a video pulse of electric field, Russ. J. Nondestr. Test., 2016, vol. 52, no. 11, pp. 653—6561.

    Article  Google Scholar 

  11. Kachanov, V.K., Sokolov, I.V., Karavaev, M.A., and Kontsov, R.V., Selecting optimum parameters of ultrasonic noncontact shadow method for testing products made of polymer composite materials, Russ. J. Nondestr. Test., 2020, vol. 56, no. 10, pp. 831–842.

    Article  Google Scholar 

  12. Derusova, D.A., Vavilov, V.P., Druzhinin, N.V., Kolomeets, N.P., Chulkov, A.O., Rubtsov, V.E., and Kolubaev, E.A., Investigating vibration characteristics of magnetostrictive transducers for air-coupled ultrasonic NDT of composites, NDT & E Int., 2019, vol. 107. https://doi.org/10.1016/j.ndteint.2019.102151

  13. Shpil’noi, V.Yu., Vavilov, V.P., Derusova, D.A., Druzhinin, N.V., and Yamanovskaya, A.Yu., Specific features of nondestructive testing of polymer and composite materials using air-coupled ultrasonic excitation and laser vibrometry, Russ. J. Nondestr. Test., 2021, vol. 57, no. 8, pp. 647–655.

    Article  Google Scholar 

  14. Solodov, I., Bernhardt, Y., and Kreutzbruck, M., Resonant airborne acoustic emission for nondestructive testing and defect imaging in composites, Appl. Sci., 2021, vol. 11, no. 21, p. 10141. https://doi.org/10.3390/app112110141

    Article  CAS  Google Scholar 

  15. Solodov, I., Dillenz, A., and Kreutzbruck, M., A new mode of acoustic NDT via resonant air-coupled emission, J. Appl. Phys., 2017, vol. 121, p. 245101. https://doi.org/10.1063/1.4985286

    Article  CAS  Google Scholar 

  16. Schmerr, L.W. and Song, S.-J., Ultrasonic Nondestructive Evaluation Systems, Boston: Springer, 2007, 1st ed.

    Book  Google Scholar 

  17. Guo, X. and Zhu, L., Vibro-thermography of calibrated defects in hybrid plates focusing on viscoelastic heat generation, Quant. InfraRed Thermogr. J., 2020. https://doi.org/10.1080/17686733.2020.1771528

  18. Solodov, I., Döring, D., and Busse, G., Air-coupled Lamb and Rayleigh waves for remote NDE of defects and material elastic properties, J. Mech. Eng., 2010, vol. 56, no. 9, pp. 557–564.

    Google Scholar 

  19. Blum, R., DE Patent 19519669C1, Verfahren zur Erkennung von Spaltern in Span- und MDF-Platten und Vorrichtung zur Durchführung des Verfahrens, 1997.

    Google Scholar 

  20. Pylnov, Yu.V., Shirkovskiy, P.N., Pernod, Ph., and Preobrazhensky, V.L., Ultrasonic air-coupled wave phase conjugator for the low megahertz frequency range, Proc. IEEE Ultrason. Symp., 2009, pp. 2611–2614, p. 5441902.

  21. Li, X., Dai, Z., Zhang, G., Zhang, S., and Jeong, H., Determining the responsivity of air-coupled piezoelectric transducers using a comparative method: Theory and experiments, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2021, vol. 68, no. 10, pp. 3114–3125. https://doi.org/10.1109/TUFFC.2021.3084756

    Article  Google Scholar 

  22. Wu, Q., Chen, Q., Lian, G., Wang, X., Song, X., and Zhang, X., Investigation of an air-coupled transducer with a closed-cell material matching strategy and an optimization design considering the electrical input impedance, Ultrasonics, 2021, vol. 115, p. 106477. https://doi.org/10.1016/j.ultras.2021.106477

    Article  CAS  Google Scholar 

  23. Yang, J.-S., Ma, L., Chaves-Vargas, M., Huang, T.-X., Schröder, K.-U., Schmidt, R., and Wu, L.- Z., Influence of manufacturing defects on modal properties of compo site pyramidal truss-like core sandwich cylindrical panels, Compos. Sci. Technol., 2017, vol. 147, pp. 89–99. https://doi.org/10.1016/j.compscitech.2017.05.007

    Article  CAS  Google Scholar 

  24. Dolmatov, D., Zhvyrblya, V., and Sednev, D., The development of post-processing algorithm for the ultrasonic evaluation by the application of automated robotic testing systems, IOP Conf. Ser. Mater. Sci. Eng., 2021, vol. 1019, no. 1. https://doi.org/10.1088/1757-899X/1019/1/012006

Download references

Funding

The work was carried out within the framework of grant no. MK-221.2021.4 of the President of the Russian Federation for the state support of young Russian scientists, candidates of sciences (the magnetostrictive emitter results), grant no. 21-79-00169 from the Russian Science Foundation (the gas-discharge emitter results), and Russian State Project “Science” FSWW-2020-0014 (the quality control methodology).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Derusova, V. P. Vavilov, V. O. Nekhoroshev, V. Yu. Shpil’noi or N. V. Druzhinin.

Ethics declarations

The authors are grateful to Prof. I.Yu. Solodov (University of Stuttgart, Germany) for his assistance in research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Derusova, D.A., Vavilov, V.P., Nekhoroshev, V.O. et al. Features of Laser-Vibrometric Nondestructive Testing of Polymer Composite Materials Using Air-Coupled Ultrasonic Transducers. Russ J Nondestruct Test 57, 1060–1071 (2021). https://doi.org/10.1134/S1061830921120044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830921120044

Keywords:

Navigation