Skip to main content
Log in

Determining Geometric-Acoustic Properties of a Weld as a Solution to the Inverse Coefficient Problem for a Scalar Wave Equation

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

Ultrasonic tomographic methods of nondestructive testing of objects have been developed in order to determine the geometry of a weld and to estimate the velocity field in it. A solution to the inverse coefficient problem for the echo signal recording scheme in the shadow-mirror mode is proposed. Numerical simulations have been carried out for various tomographic schemes on samples with acoustic parameters and a geometry corresponding to a real experiment using an antenna array with an operating frequency of 2.25 MHz. Optimization of tomographic schemes for various applied problems is carried out by numerical methods. It is shown that with the help of the developed tomographic schemes it is possible not only to detect the boundaries of a welded joint, but also to determine the velocity field inside the test object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Bazulin, E.G., Comparison of systems for ultrasonic nondestructive testing using antenna arrays or phased antenna arrays, Russ. J. Nondestr. Test., 2013, vol. 49, no. 7, pp. 404–423.

    Article  Google Scholar 

  2. Hunter, A.J., Drinkwater, B.W., and Wilcox, P.D., The Wavenumber Algorithm for Full-Matrix Imaging Using and Ultrasonic Array, NDT Int., 2006, vol. 39, no. 7, pp. 525–541.

    Article  Google Scholar 

  3. Kovalev, A.V., Kozlov, V.N., Samokrutov, A.A., Shevaldykin, V.G., and Yakovlev, N.N., Pulse echo method for testing concrete. Interference and spatial selection, Defektoskopiya, 1990, no. 2, pp. 29–41.

  4. Samokrutov, A.A. and Shevaldykin, V.G., Possibilities of assessing the nature of a metal discontinuity using an ultrasonic tomograph with digital focusing of an antenna array, Kontrol’ Diagn., 2011, no. 10, pp. 63–70.

  5. Deleye, X., Hörchens, L., and Chougrani, K., Experimental comparison of wave-field based ultrasonic imaging with other advanced ultrasonic weld inspection techniques, 18th World Conf. Nondestr. Test., Durban, 2012.

  6. Bazulin, E.G., Determination of the reflector type from an image reconstructed using echo signals measured with ultrasonic antenna arrays, Russ. J. Nondestr. Test., 2014, vol. 50, no. 3, pp. 141–149.

    Article  Google Scholar 

  7. Blitz, J. and Simpson, G., Ultrasonic Methods of Nondestructive Testing, London: Springer, 1995.

    Google Scholar 

  8. Langenberg, K.-J., Marklein, R., and Mayer, K., Ultrasonic Nondestructive Testing, Boca-Raton: CRC Press, 2012.

    Book  Google Scholar 

  9. Kachanov, V.K., Sokolov, I.V., Timofeev, D.V., Turkin, M.V., and Shalimova, E.V., Detection of reflecting planes in ultrasonic tomography of concrete building structures, Russ. J. Nondestr. Test., 2010, vol. 46, no. 5, pp. 342–349.

    Article  Google Scholar 

  10. Koshevoy, V.V., Kryvin, E.V., Muraviov, A.M., and Romanyshyn, I.M., Special features of the ultrasonic tomography of thick-sheet products, Russ. J. Nondestr. Test., 2004, vol. 40, no. 7, pp. 431–441.

    Article  Google Scholar 

  11. Bazulin, E.G. and Sadykov, M.S., Determining the speed of longitudinal waves in an isotropic homogeneous welded joint using echo signals measured by two antenna arrays, Russ. J. Nondestr. Test., 2018, vol. 54, no. 5, pp. 303–315.

    Article  Google Scholar 

  12. Bellis, C. and Bonnet, M., Crack identification by 3D time-domain elastic or acoustic topological sensitivity, C. R. Mecanique, 2009, vol. 337, no. 3, pp. 124–130.

    Article  Google Scholar 

  13. Lubeigt, E., Mensah, S., Rakotonarivo, S., Chaix, J-F., Baquѐ, F., and Gobillot, G., Topological imaging in bounded elastic media, Ultrasonics, 2017, vol. 76, pp. 145–153.

    Article  Google Scholar 

  14. Dominguez, N. and Gibiat, V., Non-destructive imaging using the time domain topological energy, Ultrasonics, 2010, vol. 50, no. 3, pp. 367–372.

    Article  CAS  Google Scholar 

  15. Rodriguez, S., Deschamps, M., Castaings, M., and Ducasse, E., Guided wave topological imaging of isotropic plates, Ultrasonics, 2014, vol. 54, no. 7, pp. 1880–1890.

    Article  CAS  Google Scholar 

  16. Metwally, K., Lubeigt, E., Rakotonarivo, S., Chaix, J.F., Baque, F., Gobillot, G., and Mensah, S., Weld inspection by focused adjoint method, Ultrasonics, 2018, vol. 83, pp. 80–87.

    Article  Google Scholar 

  17. Bachmann, E., Jacob, X., Rodriguez, S., and Gibiat, V., Three-dimensional and real-time two-dimensional topological imaging using parallel computing, J. Acoust. Soc. Am., 2015, vol. 138, no. 3, p. 1796.

    Article  Google Scholar 

  18. Kocur, G.K., Saenger, E.H., Grosse, C.U., and Vogel, T., Time reverse modeling of acoustic emissions in a reinforced concrete beam, Ultrasonics, 2016, vol. 65, pp. 96–104.

    Article  Google Scholar 

  19. Virieux, J. and Operto, S., An overview of full-waveform inversion in exploration geophysics, Geophysics, 2009, vol. 74, no. 6, pp. WCC1–WCC26.

    Article  Google Scholar 

  20. Vinard, N., Martiartu, N.K., Boehm, C., Balic, I.J., and Fichtner, A., Optimized transducer configuration for ultrasound waveform tomography in breast cancer detection, Medical Imaging 2018: Ultrasonic Imaging and Tomography Proc. SPIE, Quebec, 2018, vol. 10580, p. 1058001.

  21. Klibanov, M.V., Kolesov, A.E., and Nguyen, D.-L., Convexification method for an inverse scattering problem and its performance for experimental backscatter data for buried targets, SIAM J. Imaging Sci., 2019, vol. 12, pp. 576–603.

    Article  Google Scholar 

  22. Goncharsky, A.V. and Romanov, S.Y., Iterative methods for solving coefficient inverse problems of wave tomography in models with attenuation, Inverse Probl., 2017, vol. 33, no. 2, article ID 025003.

    Article  Google Scholar 

  23. Seidl, R. and Rank, E., Iterative time reversal based flaw identification, Comput. Math. Appl., 2016, vol. 72, no. 4, pp. 879–892.

    Article  Google Scholar 

  24. Marty, P., Boehm, C., and Fichtner, A., Acoustoelastic full-waveform inversion for transcranial ultrasound computed tomography, Medical Imaging 2021: Ultrasonic Imaging and Tomography Proc. SPIE., Quebec, 2021, vol. 11602, p. 1160211.

  25. Pérez-Liva, M., Herraiz, J.L., Udías, J.M., Miller, E., Cox, B.T., and Treeby, B.E., Time domain reconstruction of sound speed and attenuation in ultrasound computed tomography using full wave inversion, J. Acoust. Soc. Am., 2017, vol. 141, no. 3, pp. 1595–1604.

    Article  Google Scholar 

  26. Rao, J., Ratassepp, M., and Fan, Z., Guided wave tomography based on full waveform inversion, IEEE Trans. Ultrason. Eng., 2016, vol. 63, no. 5, pp. 737–745.

    Article  Google Scholar 

  27. Bazulin, E.G. and Goncharsky, A.V., Inverse problems of ultrasonic tomography in nondestructive testing: Mathematical methods and experiment, Russ. J. Nondestr. Test., 2019, vol. 55, no. 6, pp. 453–462.

    Article  Google Scholar 

  28. Bazulin, E.G., Goncharsky, A.V., Romanov, S.Y., and Seryozhnikov, S.Y., Parallel CPU- and GPU-algorithms for inverse problems in nondestructive testing, Lobachevskii J. Math., 2018, vol. 39, no. 4, pp. 486–493. https://doi.org/10.1134/S1995080218040030

    Article  Google Scholar 

  29. Juengert, A., Dugan, S., Homann, T., Mitzscherling, S., Prager, J., Pudovikov, S., and Schwender, T., Advanced ultrasonic techniques for nondestructive testing of austenitic and dissimilar welds in nuclear facilities, AIP Conf. Proc., 2018, vol. 1949, p. 110002. https://doi.org/10.1063/1.5031581

    Article  Google Scholar 

  30. Chassignole, B., Villard, D., Dubuget, M., Baboux, J-C., and El Guerjouma, R., Characterization of austenitic stainless steel welds for ultrasonic NDT, AIP Conf. Proc., 2000, vol. 509, pp. 1325–1332. https://doi.org/10.1063/1.1307835

    Article  CAS  Google Scholar 

  31. Romanov, S.Y., Supercomputer simulations of ultrasound tomography problems of flat objects, Lobachevskii J. Math., 2020, vol. 41, no. 8, pp. 1563–1570. https://doi.org/10.1134/S199508022008017X

    Article  Google Scholar 

  32. Ilgamov, M.A. and Gil’manov, A.H., Neotrazhayushchie usloviya na granitsakh raschetnoi oblasti (Nonreflective Conditions at the Boundaries of Design Domain), Moscow: Fizmatlit, 2003.

  33. Engquist, B. and Majda, A., Absorbing boundary conditions for the numerical simulation of waves, Math. Comput., 1977, vol. 31, pp. 629–651.

    Article  Google Scholar 

  34. Goncharsky, A.V. and Romanov, S.Y., A method of solving the coefficient inverse problems of wave tomography, Comp. Math. Appl., 2019, vol. 77, pp. 967–980. https://doi.org/10.1016/j.camwa.2018.10.033

    Article  Google Scholar 

  35. Natterer, F., Possibilities and limitations of time domain wave equation imaging, Contemp. Math., 2011, vol. 559, pp. 151–162. https://doi.org/10.1090/conm/559

    Article  Google Scholar 

  36. Klibanov, M.V. and Kolesov, A.E., Convexification of a 3-D coefficient inverse scattering problem, Comp. Math. Appl., 2019, vol. 77, no. 6, pp. 1681–1702.

    Article  Google Scholar 

  37. Bazulin, E.G. and Vopilkin, A.Kh., reference-free method for thickness gaging of a test object and measuring the speed of longitudinal and transverse waves in it based on echo signals picked by an antenna array, Russ. J. Nondestr. Test., 2019, vol. 55, no. 6, pp. 463–475.

    Article  Google Scholar 

  38. Bazulin, A.E. and Bazulin, E.G., Application of antenna arrays and organosilicon polymers as an immersion medium for ultrasonic testing of objects with rough surfaces, Russ. J. Nondestr. Test., 2014, vol. 50, no. 7, pp. 377–384.

    Article  CAS  Google Scholar 

  39. Voevodin, Vl., Antonov, A., Nikitenko, D., Shvets, P., Sobolev, S., Sidorov, I., Stefanov, K., Voevodin, Vad., and Zhumatiy, S., Supercomputer Lomonosov-2: large scale, deep monitoring and fine analytics for the user community, Supercomput. Front. Innovations, 2019, vol. 6, no. 2, pp. 4–11. https://doi.org/10.14529/jsfi190201

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Education and Science of the Russian Federation within the framework of the program of the Moscow Center for Fundamental and Applied Mathematics under agreement no. 075–15–2019–1621. The work was performed using the equipment equipment of the shared research facilities of HPC computing resources Computing Resources at Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. G. Bazulin, A. V. Goncharskii, S. Yu. Romanov or S. Yu. Seryozhnikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bazulin, E.G., Goncharskii, A.V., Romanov, S.Y. et al. Determining Geometric-Acoustic Properties of a Weld as a Solution to the Inverse Coefficient Problem for a Scalar Wave Equation. Russ J Nondestruct Test 57, 933–944 (2021). https://doi.org/10.1134/S1061830921110036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830921110036

Keywords:

Navigation