Skip to main content
Log in

Theoretical and Experimental Studies of the Bone Damage Detection by the Ultrasonic Method

  • ACOUSTIC METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The bones elastic characterization using the nondestructive technique based on the propagation of the ultrasonic waves well studied in this paper. The elastic properties of materials play a fundamental role in the scientific and medical domains; their measurements give important information on the mechanical properties of these materials. In addition, the ability to measure the elastic properties of bones quickly and accurately can help make sure its structure quality over the life cycle and control its damage throughout the lifetime. This paper mainly concerns the control of osteoporosis. In order to treat this phenomenon, we must first make the diagnosis. This work is important by the fact that it is a characterization (essentially mechanical) of the osteoporosis bones and that it is imperative that the sounding be of the nondestructive type, especially if the examination is be repeated often. First, the work of this study concerns develop new methods for the nondestructive evaluation of mechanical alterations of bone tissue to osteoporosis. In our study, we found the link between the bone elastic properties variation and its porosity, saturation fluid, pores shape, pore radius and trabecular alignment. The technique used in this study has based on measure the ultrasound and elastic parameters as celebrate the porosity. This requires develop of theoretical models to study, the ultrasonic waves propagate in porous bones (Biot model). These criterions have identified experimentally in bovine trabecular bones. The results obtained show that the proposed method is very effective in characterizing the osteoporosis effect on the bones elastic properties, for acoustic characterization purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Aggelis, D., Barkoula, N.-M., Matikas, T., and Paipetis, A., Acoustic structural health monitoring of composite materials: damage identification and evaluation in cross ply laminates using acoustic emission and ultrasonics, Compos. Sci. Technol., 2012, vol. 72, no. 10, pp. 1127–1133.

    Article  CAS  Google Scholar 

  2. Talreja, R., Fatigue of composite materials: damage mechanisms and fatigue-life diagrams, Proc. R. Soc. Lond. A., 1981, vol. 378, pp. 461–475.

    Article  Google Scholar 

  3. Hwang, W., Han, K.S., Fatigue of composite materials damage model and life prediction, Composite Materials: Fatigue and Fracture, Second Volume, West Conshohocken: ASTM Int., 1989.

    Google Scholar 

  4. Camacho, G.T. and Ortiz, M., Computational modelling of impact damage in brittle materials, Int. J. Solids Struct., 1996, vol. 33, no. 20–22, pp.2899–2938.

  5. Kempf, M., Skrabala, O., Altstadt, V., Acoustic emission analysis for characterization of damage mechanisms in fiber reinforced thermosetting polyurethane and epoxy, Compos. Part. B-Eng., 2014, vol. 56, pp. 477–483. https://doi.org/10.1016/j.compositesb.2013.08.080

    Article  CAS  Google Scholar 

  6. Al-Jumaili, K.S., Holford, M.K., Eaton, J.M., and Pullin, R., Parameter correction technique (PCT): a novel method for acoustic emission characterization in large-scale composites, Compos. Part. B-Eng., 2015, vol. 75, pp. 336–344. https://doi.org/10.1016/j.compositesb.2015.01.044

    Article  Google Scholar 

  7. Weser, R., Woeckel, S., Wessely, B., Steinmann, U., Babick, F., and Stintz, M., Ultrasonic backscattering method for in-situ characterization of concentrated dispersions, Powder Technol., 2014, vol.268, pp. 177–190. https://doi.org/10.1016/j.powtec.2014. 08.026.

  8. Fadhel, M.N., Berndl, E.S.L., Strohm, E.M., and Kolios, M.C., High-frequency acoustic impedance imaging of cancer cells, Ultrasound Med. Biol., 2015, vol. 41, pp. 2700–2713. https://doi.org/10.1016/j.ultrasmedbio.2015.06.003

    Article  Google Scholar 

  9. Ghiassi, B., Verstrynge, E., Lourenco, P.B., and Oliveira, D.V., Characterization of debonding in frp-strengthened masonry using the acoustic emission technique, Eng. Struct., 2014, vol. 66, pp. 24–34. https://doi.org/10.1016/j.engstruct.2014.01.050

    Article  Google Scholar 

  10. Hosokawa, A., Otani, T., Suzaki, T., Kubo, Y., and Takai, S., Influences of trabecular structure on ultrasonic wave propagation in bovine cancellous bone, Jpn. J. Appl. Phys., 1997, vol. 36, no. 5S, p. 3233.

    Article  CAS  Google Scholar 

  11. Hosokawa, A. and Otani, T., Ultrasonic wave propagation in bovine cancellous bone, J. Acoust. Soc. Am., 1997, vol. 101, no. 1, pp. 558–562.

    Article  CAS  Google Scholar 

  12. Hosokawa, A. and Otani, T., Acoustic anisotropy in bovine cancellous bone, J. Acoust. Soc. Am., 1998, vol. 103, no. 5, pp. 2718–2722.

    Article  CAS  Google Scholar 

  13. Hosokawa, A., Simulation of ultrasound propagation through bovine cancellous bone using elastic and biots finite-difference time-domain methods, J. Acoust. Soc. Am., 2005, Vol. 118, No. 3, pp. 1782–1789.

    Article  CAS  Google Scholar 

  14. Hosokawa, A., Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods, Ultrasonics, 2006, vol. 44, pp. 227–231.

    Article  Google Scholar 

  15. Hosokawa, A., Effect of porosity distribution in the propagation direction on ultrasound waves through cancellous bone, IEEE Trans. Ultrasonics Ferroelectr. Freq. Control, 2010, vol. 57, No. 6, pp. 1320–1328.

    Article  Google Scholar 

  16. Auperrin, A., Caractérisation tissulaire pour la d’détermination du comportement de l’os crânien: essais mécaniques et imagerie ´médicale, Ph.D. Thesis, Universit’e de Valenciennes et du Hainaut-Cambresis, 2009.

  17. Manolis, G.D. and Dineva, P.S., Elastic waves in continuous and discontinuous geological media by boundary integral equation methods: A review, Soil Dyn. Earthquake Eng., 2015, vol. 70, pp. 11–29.

    Article  Google Scholar 

  18. Vishal, V., Ranjith, P., and Singh, T., An experimental investigation on behaviour of coal under fluid saturation, using acoustic emission, J. Natur. Gas Sci. Eng., 2015, vol. 22, pp. 428–436.

    Article  CAS  Google Scholar 

  19. Schoch, A. and Feh’er, K., The mechanism of sound transmission through single leaf partitions, investigated using small scale models, Acta Acust. Acust., 1952, vol. 2, no. 5, pp. 189–204.

    Google Scholar 

  20. Mountassir, L., Bassidi, T., Nounah, H., and Bennamane, A., Studies and modeling elastic properties of porous bones by ultrasound technique, Int. Rev. Mech. Eng., 2015, vol. 9, no. 4, pp. 408–416.

    Google Scholar 

  21. Mountassir Lahcen, Touriya Bassidi, and Hassan Nounah, Studies and modelling the effect of porosity on the microstructure and properties of cancellous bone by the ultrasound method, Int. J. Microstruct. Mater. Prop., 2016, vol. 11, no. 6, pp. 435–452.

    Google Scholar 

  22. Biot, M.A., Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range, J. Acoust. Soc. Am., 1956, vol. 28, no. 2, pp. 179–191.

    Article  Google Scholar 

  23. Biot, M.A., Generalized theory of acoustic propagation in porous dissipative media, J. Acoust. Soc. Am., 1962, vol. 34, no. 9A, pp. 1254–1264.

    Article  Google Scholar 

  24. Fonseca, R.J.D.S.C., et al., Microcaractérisation élastique de matériaux poreux par signature acoustique, Ph.D. Thesis, Montpellier, 1995.

  25. Biot, M. and Willis, D., The elastic coefficients of the theory of consolidation, J. Appl. Mech., 1957, vol. 24, pp. 594–601.

    Article  Google Scholar 

  26. Biot, M.A., Mechanics of deformation and acoustic propagation in porous media, J. Appl. Phys., 1962, vol. 33, no. 4, pp. 1482–1498.

    Article  Google Scholar 

  27. Brekhovskikh, L., Waves in Layered Media, Amsterdam: Elsevier, 2012, vol. 16.

    Google Scholar 

  28. Williams, J.L., Ultrasonic wave propagation in cancellous and cortical bone: prediction of some experimental results by Biot’s theory, J. Acoust. Soc. Am., 1992, vol. 91, no. 2, pp. 1106–1112.

    Article  CAS  Google Scholar 

  29. ll Lee, K., Hughes, E., Humphrey, V., Leighton, T., and Choi, M.J., Empirical angle-dependent Biot and MBA models for acoustic anisotropy in cancellous bone, Phys. Med. Biol., 2006, vol. 52, no. 1, p. 59.

  30. Aygün, H., Attenborough, K., Postema, M., Lauriks, W., and Langton, C.M., Predictions of angle dependent tortuosity and elasticity effects on sound propagation in cancellous bone, J. Acoust. Soc. Am., 2009, vol. 126, no. 6, pp. 3286–3290.

    Article  Google Scholar 

  31. Gibson, L., The mechanical behaviour of cancellous bone, J. Biomech., 1985, vol. 18, no. 5, pp. 317–328.

    Article  CAS  Google Scholar 

  32. Jundt, G., Modèles d’endommagement et de rupture des matériaux biologiques, Ph.D. Thesis, Universit’e de la Méditerranée, Marseille, 2007.

  33. Haiat, G., Padilla, F., Svrcekova, M., Chevalier, Y., Pahr, D., Peyrin, F., Laugier, P., and Zysset, P., Relationship between ultrasonic parameters and apparent trabecular bone elastic modulus: A numerical approach, J. Biomech., 2009, vol. 42, no. 13, pp. 2033–2039.

    Article  CAS  Google Scholar 

  34. Sebaa, N., Propagation des ondes acoustiques dans les milieux poreux saturés: Application du modèle de Biot à la détermination de paramètres des mousses plastiques et de l’os trabéculaire, Ph.D. Thesis, Université de le Mans, 2006.

  35. Fellah, Z.E.A., Propagation acoustique dans les milieux poreux h’et’erogènes’, Ph.D. Thesis, Université de la Méditerranée, Marseille, 2007.

  36. Sun, Y., Ultrasound characterization of structure and density of coral as a model for trabecular bone, Ph.D. Thesis, Worcester Polytech. Inst., 2000.

  37. Riekkinen, O., Development and Application of Ultrasound Backscatter Methods for the Diagnostics of Trabecular Bone, University of Kuopio, 2008.

    Google Scholar 

  38. Müller, R., Hildebrand, T., Hauselmann, H., Ruegsegger, P., In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3d-pqct, J. Bone Mineral Res., 1996, vol. 11, no. 11, pp. 1745–1750.

    Article  Google Scholar 

  39. Gordon, C.L., Webber, C.E., Christoforou, N., and Nahmias, C., In vivo assessment of trabecular bone structure at the distal radius from high-resolution magnetic resonance images, Med. Phys., 1997, vol. 24, no. 4, pp. 585–593.

    Article  CAS  Google Scholar 

  40. Majumdar, S., Magnetic resonance imaging of trabecular bone structure, Top. Magn. Reson. Imaging, 2002, vol. 13, no. 5, pp. 323–334.

    Article  Google Scholar 

  41. Benhamou, C., Lespessailles, E., Jacquet, G., Harba, R., Jennane, R., Loussot, T., Tourliere, D., Ohley, W., Fractal organization of trabecular bone images on calcaneus radiographs, J. Bone Mineral Res., 1994, vol. 9, no. 12, pp. 1909–1918.

    Article  CAS  Google Scholar 

  42. Ogam, E., Caractérisation ultrasonore et vibroacoustique de la santé mécanique des os humains, Ph.D. Thesis, Universit’e de Provence-Aix-Marseille, Marseille, 2007.

  43. Naas, M., Contribution à l’étude de la propagation des ondes acoustiques dans les milieux poreux inhomogènes: en vue d’une application à l’os trabéculaire, Ph.D. Thesis, Le Mans, 2010.

  44. Laugier, P. and Haïat, G., Bone Quantitative Ultrasound, Berlin: Springer, 2011, vol. 576.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lahcen Mountassir, Touriya Bassidi or Hassan Nounah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mountassir, L., Bassidi, T. & Nounah, H. Theoretical and Experimental Studies of the Bone Damage Detection by the Ultrasonic Method. Russ J Nondestruct Test 57, 525–540 (2021). https://doi.org/10.1134/S1061830921070093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830921070093

Keywords:

Navigation