Skip to main content
Log in

Detection of Hazardous Liquids Using Microwave Data and Well-Known Classification Algorithms

  • RADIO-WAVE TECHNIQUES
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

The recent increase in terrorist attacks realized using liquid explosives has made it important to develop quick and reliable methods that can distinguish between nonhazardous liquids and other liquids that can be used in these explosives. Since the stability and sensitivity properties of microwave systems are high, microwave frequency band is preferred to differentiate hazardous liquids from non-hazardous liquids. In this study, a noncontact system based on electromagnetic response measurements of liquids in microwave frequency band is proposed to develop a classification approach that can be used in liquid scanners. Naive Bayes, linear discriminant analysis, qualitative data analysis, support vector machine, sequential minimal optimization, K-nearest neighbors classification algorithms are used to classify liquids and their classification performances are analyzed. The results of the set of classification experiments prove the success of the proposed measurement method. As the results prove, K-nearest neighbors is the most appropriate classification algorithm for hazardous liquid detection. Since it can be easily implemented and its detection process is fast, a classification system based on the proposed approach can be very useful in airports and shopping malls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Melnikov, Y., Avtonomov, P., Kornienko, V., and Olshansky, Y., Detection of dangerous materials and illicit objects in cargoes and baggage: current tools, existing problems and possible solutions, J. Homeland Secur. Emerg. Manage., 2011, vol. 8, no. 1. https://doi.org/10.2202/1547-7355.1889

  2. Cardona, L., Jiménez, J., and Vanegas, N., Nuclear quadrupole resonance for explosive detection, Ingeniare Revista chilena de ingeniería, 2015, vol. 23, no. 3, pp. 458–472.

    Article  Google Scholar 

  3. Miller, J. and Barrall, G., Explosives detection with nuclear quadrupole resonance, Am. Sci., 2005, vol. 93, no. 1, p. 50.

    Article  Google Scholar 

  4. Kumar, S., Liquid-contents verification for explosives, other hazards, and contraband by magnetic resonance, Appl. Magn. Reson., 2004, vol. 25, nos. 3–4, pp. 585–597. https://doi.org/10.1007/BF03166550.

  5. Espy, M., Flynn, M., Gomez, J., Hanson, C., Kraus, R., Magnelind, P., et al., Ultra-low-field MRI for the detection of liquid explosives, Supercond. Sci. Technol., 2010, vol. 23, no. 3, p. 034023. https://doi.org/10.1088/0953-2048/23/3/034023

    Article  CAS  Google Scholar 

  6. Abidin, Z.Z., Omar, F.N., Yogarajah, P., Biak, D.R.A., and Man, Y.B.C., Dielectric characterization of liquid containing low alcoholic content for potential halal authentication in the 0.5-50 GHz range, Am. J. Appl. Sci., 2014, vol. 11, no. 7, pp. 1104–1112. https://doi.org/10.3844/ajassp.2014.1104.1112

    Article  CAS  Google Scholar 

  7. Singh, S. and Singh, M., Explosives detection systems (EDS) for aviation security, Signal Process., 2003, vol. 83, no. 1, pp. 31–55. https://doi.org/10.1016/S0165-1684(02)00391-2.

  8. Schulte-Ladbeck, R., Vogel, M., and Karst, U., Recent methods for the determination of peroxide-based explosives, Anal. Bioanal. Chem., 2006, vol. 386, no. 3, pp. 559–565. https://doi.org/10.1007/s00216-006-0579-y

    Article  CAS  Google Scholar 

  9. Choi, K., Hong, T., Sim, K.I., Ha, T., Park, B.C., Chung, J.H., et al. Reflection terahertz time-domain spectroscopy of RDX and HMX explosives, J. Appl. Phys., 2014, vol. 115, no. 2, p. 023105. https://doi.org/10.1063/1.4861616

    Article  CAS  Google Scholar 

  10. Windgasse, G. and Dauerman, L., Microwave treatment of hazardous wastes: removal of volatile and semi-volatile organic contaminants from soil, J. Microwave Power Electromagn. Energy, 1992, vol. 27, no. 1, pp. 23–32. https://doi.org/10.1080/08327823.1992.11688167

    Article  Google Scholar 

  11. Mudhoo, A. and Sharma, S.K., Microwave irradiation technology in waste sludge and wastewater treatment research, Crit. Rev. Environ. Sci. Technol., 2011, vol. 41, no. 11, pp. 999–1066. https://doi.org/10.1080/10643380903392767

    Article  CAS  Google Scholar 

  12. Liu, L., Application of microwave for remote NDT and distinction of biofouling and wall thinning defects inside a metal pipe, J. Nondestr. Eval., 2015, vol. 34, no. 4. https://doi.org/10.1007/s10921-015-0313-9

  13. Lucic, B., Basic, I., Nadramija, D., Milicevic, A., Trinajstic, N., Suzuki, T., et al., Correlation of liquid viscosity with molecular structure for organic compounds using different variable selection methods, Arkivoc, 2002, vol. 2002, no. 4, pp. 45–59. https://doi.org/10.3998/ark.5550190.0003.406

    Article  Google Scholar 

  14. Tekbas, M., Toktas, A., and Ustun, D., A formulaic model calculating the permittivity of testing materials placed on a circular patch antenna, in 2019 XXIVth Int. Semin./Workshop Direct Inverse Probl. Electromagn. Acoust. Wave Theory (DIPED), 2019. https://doi.org/10.1109/DIPED.2019.8882582.

  15. Büyüköztürk, O., Yu, T.-Y., and Ortega, J.A., A methodology for determining complex permittivity of construction materials based on transmission-only coherent, wide-bandwidth free-space measurements, Cem. Concr. Compos., 2006, vol. 28, no. 4, pp. 349–59. https://doi.org/10.1016/j.cemconcomp.2006.02.004

    Article  CAS  Google Scholar 

  16. Al-Mously, S.I.Y., A modified complex permittivity measurement technique at microwave frequency, Int. J. New Comput. Archit. Appl., 2012, vol. 2, pp. 389–401.

    Google Scholar 

  17. Li, Z., Haigh, A., Soutis, C., Gibson, A., and Sloan, R., A Simulation-assisted non-destructive approach for permittivity measurement using an open-ended microwave waveguide, J. Nondestr. Eval., 2018, vol. 37, no. 3, https://doi.org/10.1007/s10921-018-0493-1

  18. Jiang, Y., Ju, Y., and Yang, L., Nondestructive in-situ permittivity measurement of liquid within a bottle using an open-ended microwave waveguide, J. Nondestr. Eval., 2015, vol. 35, no. 1. https://doi.org/10.1007/s10921-015-0322-8

  19. Derousseau, M., Laftchiev, E., Kasprzyk, J., Rajagopalan, B., and Srubar, W., A comparison of machine learning methods for predicting the compressive strength of field-placed concrete, Constr. Build. Mater., 2019, vol. 228, p. 116661. https://doi.org/10.1016/j.conbuildmat.2019.08.042

    Article  Google Scholar 

  20. Aydın, E.A. and Keleş, M.K., Breast cancer detection using K-nearest neighbors data mining method obtained from the bow-tie antenna dataset, Int. J. RF Microwave Comput.-Aided Eng., 2017, vol. 27, no. 6. https://doi.org/10.1002/mmce.21098

  21. Prasad, V., Rao, T.S., and Babu, M.S.P., Thyroid disease diagnosis via hybrid architecture composing rough data sets theory and machine learning algorithms, Soft Comput., 2015, vol. 20, no. 3, pp. 1179–1189. https://doi.org/10.1007/s00500-014-1581-5

    Article  Google Scholar 

  22. Fatemi, M.H. and Ghorbanzad’e, M., Classification of drugs according to their milk/plasma concentration ratio, Eur. J. Med. Chem., 2010, vol. 45, no. 11, pp. 5051–5055. https://doi.org/10.1016/j.ejmech.2010.08.013

    Article  CAS  Google Scholar 

  23. Kim, S., Kwak, J., and Ko, B., Automatic classification algorithm for raw materials using mean shift clustering and stepwise region merging in color, J. Broadcast Eng., 2016, vol. 21, no. 3, pp. 425–435. https://doi.org/10.5909/JBE.2016.21.3.425

    Article  Google Scholar 

  24. Balabin, R.M., Safieva, R.Z., and Lomakina, E.I., Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques, Anal. Chim. Acta, 2010, vol. 671, nos. 1–2, pp. 27–35. https://doi.org/10.1016/j.aca.2010.05.013

  25. Maione, C., Barbosa, F., and Barbosa, R.M., Predicting the botanical and geographical origin of honey with multivariate data analysis and machine learning techniques: a review, Comput. Electron. Agric., 2019, vol. 157, pp. 436–446. https://doi.org/10.1016/j.compag.2019.01.020

    Article  Google Scholar 

  26. Dos Santos, J.C.A., Dias, M.H.C., Aguiar, A., and Borges, I., Jr., Using the coaxial probe method for permittivity measurements of liquids at high temperatures, J. Microwaves Optoelectron. Electromagn. Appl., 2009, vol. 8, pp. 78–91.

    Google Scholar 

  27. Mitani, T., Hasegawa, N., Nakajima, R., Shinohara, N., Nozaki, Y., Chikata, T., et al., Development of a wideband microwave reactor with a coaxial cable structure, Chem. Eng. J., 2016, vol. 299, pp. 209–216. https://doi.org/10.1016/j.cej.2016.04.064

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurkan Tuna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebru Efeoglu, Gurkan Tuna Detection of Hazardous Liquids Using Microwave Data and Well-Known Classification Algorithms. Russ J Nondestruct Test 56, 742–751 (2020). https://doi.org/10.1134/S106183092009003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106183092009003X

Keywords:

Navigation