Skip to main content
Log in

Limit Capabilities of Identifying Materials by High Dual- and Multi-Energy Methods

  • RADIATION METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

A method is considered for identifying materials in large-sized test objects by high dual- and multi-energy methods based on assessment of effective atomic number. An algorithm is presented for processing original images produced by dual- and multi-energy methods. The algorithm allows one to determine the effective atomic number of the material of the test object and its fragments. It is proved by a computational experiment that the ADC digit capacity and the mass thickness and effective atomic number of the test-object material have a significant effect on the quality of material identification. The necessity of prefiltering bremsstrahlung to ensure the prescribed identification quality for small thicknesses of fragments of studied objects is substantiated. An algorithm is provided for assessing the limit capabilities of the proposed method in material identification. The fundamental possibility of distinguishing between the following materials has been experimentally proved by numerical modeling: light organics (\(Z = 6\)); mineral materials (\(Z = 9\)); light metals (\(Z = 13\)); calcium (\(Z = 19\)); metals (\(Z = 26\)); heavy metals (\(Z > 50\)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Lee, D., Lee, J., Min, J., Lee, B., Lee, B., Oh, K., Kim, J., and Cho, S., Efficient material decomposition method for dual-energy X-ray cargo inspection system, Nucl. Instrum. Methods Phys. Res.,Sect. A, 2018, vol. 884, pp. 105–112.

    CAS  Google Scholar 

  2. Martz, H.E., Glenn, S.M., Smith, J.A., Divin, C.J., and Azevedo, S.G., Poly- versus mono-energetic dual spectrum non-intrusive inspection of cargo containers, IEEE Trans. Nucl. Sci., 2017, vol. 64, no. 7, pp. 1709–1718.

    Article  CAS  Google Scholar 

  3. Li, L., Li, R., Zhang, S., Zhao, T., and Chen, Z., A dynamic material discrimination algorithm for dual MV energy X-ray digital radiography, Appl. Radiat. Isot., 2016, vol. 114, pp. 188–195.

    Article  CAS  Google Scholar 

  4. Chen, Z.Q., Zhao, T., and Li, L., A curve-based material recognition method in MeV dual-energy X-ray imaging system, Nucl. Sci. Tech., 2016, vol. 27, no. 1, article no. 25, pp. 1–8.

  5. Paulus, C., Moulin, V., Perion, D., Radisson, P., and Verger, L., Multi-energy x-ray detectors to improve aircargo security, Anomaly Detection and Imaging with X-Rays (ADIX) II, Int. Soc. Opt. Photonics, 2017, vol. 10187, article no. 101870I.

  6. Shikhaliev, P.M., Megavoltage cargo radiography with dual energy material decomposition, Nucl. Instrum. Methods Phys. Res.,Sect. A, 2018, vol. 882, pp. 158–168.

    CAS  Google Scholar 

  7. Arodzero, A., Boucher, S., Burstein, P., Frenkel, M., Katsevich, A., Kutsaev, S.V., and Lanza, R.C., ACTM: Adaptive computed tomography with modulated-energy X-ray pulses, 2017 IEEE Nucl. Sci. Symp. Med. Imaging Conf. (NSS/MIC), IEEE, 2017, pp. 1–6.

  8. Jimenez, E.S., Big-Data Multi-Energy Iterative Volumetric Reconstruction Methods for As-Built Validation & Verification Applications, Albuquerque, NM (US): Sandia Natl. Lab. (SNL-NM), 2018, no. SAND2018-10707. https://doi.org/10.2172/1475102

  9. Saverskiy, A.Y., Dinca, D.C., Rommel, J.M., Cargo and container X-ray inspection with intra-pulse multienergy method for material discrimination, Phys. Procedia, 2015, vol. 66, pp. 232–241.

    Article  CAS  Google Scholar 

  10. Arodzero, A., Boucher, S., Kutsaev, S.V., Lanza, R.C., Palermo, V., O’Shea, F., and Ziskin, V., MEBCIS: Multienergy betatron-based cargo inspection system, 2016 IEEE Nucl. Sci. Symp. Med. Imaging Conf. and Room-Temp. Semicond. Detect. Workshop (NSS/MIC/RTSD), IEEE, 2016, pp. 1–5.

  11. Udod, V.A., Osipov, S.P., and Wang, Y., Comparative analysis of various definitions of the concept of effective atomic number of material of a multicomponent object, Russ. J. Nondestr. Test., 2018, vol. 54, no. 9, pp. 662–674.

    Article  Google Scholar 

  12. Gorshkov, V., The effective atomic number and the mass attenuation coefficient of a multicomponent object for the continuous spectrum of the radiation, Nondestr. Test. Eval., 2017, vol. 32, no. 1, pp. 79–89.

    Article  CAS  Google Scholar 

  13. Ryzhikov, V.D., Naydenov, S.V., Opolonin, O.D., Volkov, V.G., and Smith, C.F., Multi-energy method of digital radiography for imaging of biological objects, Med. Imaging 2016: Phys. Med. Imaging, Int. Soc. Opt. Photonics, 2016, vol. 9783, article no. 978348.

  14. Duvillier, J., Dierick, M., Dhaene, J., Van Loo, D., Masschaele, B., Geurts, R., Hoorebeke, L.V., and Boone, M.N., Inline multi-material identification via energy radiographic measurements, NDT & E Int., vol. 94, pp. 120–125.

  15. Osipov, S.P., Usachev, E.Y., Chakhlov, S.V., Shchetinkin, S.A., and Kamysheva, E.N., Selecting parameters of detectors when recognizing materials based on the separation of soft and hard X-ray components, Russ. J. Nondestr. Test., 2018, vol. 54, no. 11, pp. 797–810.

    Article  Google Scholar 

  16. Hubbell, J.H., Photon Cross Sections, Attenuation Coefficients and Energy Absorption Coefficients, Washington DC: Natl. Bur. Stand., 1969, Rep. NSRDS-NBS29.

  17. Hubbell, J.H., Electron-positron pair production by photons: a historical overview, Radiat. Phys. Chem., 2006, vol. 75, no. 6, pp. 614–623.

    Article  CAS  Google Scholar 

  18. Rogers, T.W., Jaccard, N., Morton, E.J., and Griffin, L.D., Automated X-ray image analysis for cargo security: critical review and future promise, J. X-Ray Sci. Technol., 2017, vol. 25, no. 1, pp. 33–56.

    Article  Google Scholar 

  19. Ogorodnikov, S. and Petrunin, V., Processing of interlaced images in 4–10 MeV dual energy customs system for material recognition, Phys. Rev. Spec. Top. Accel. Beams, 2002, vol. 5, no. 10, article no. 104701, pp. 67–77.

  20. Osipov, S.P., Chakhlov, S.V., Osipov, O.S., Li, S., Sun, X., Zheng, J., Hu, X., and Zhang, G., Physical and technical restrictions of materials recognition by the dual high energy X-ray imaging, Int. J. Appl. Eng. Res., 2017, vol. 12, no. 23, pp. 13127–13136.

    Google Scholar 

  21. Osipov, S.P., Zhang, G.L., Chakhlov, S.V., Shtein, M.M., Shtein, A.M., Trinh, V.B., and Sirotyan, E., Estimation of parameters of digital radiography systems, IEEE Trans. Nucl. Sci., 2018, vol. 65, no. 10, pp. 2732–2742.

    Article  CAS  Google Scholar 

  22. Park, J.S. and Kim, J.K., Calculation of effective atomic number and normal density using a source weighting method in a dual energy X-ray inspection system, J. Korean Phys. Soc., 2011, vol. 59, no. 4, pp. 2709–2713.

    Article  CAS  Google Scholar 

  23. Bonnin, A., Duvauchelle, P., Kaftandjian, V., and Ponard, P., X-ray ray computed tomography. Concept of effective atomic number, Nucl. Instrum. Methods Phys. Res.,Sect. B, 2014, vol. 318, pp. 223–231.

    CAS  Google Scholar 

  24. Kolkoori, S., Wrobel, N., Hohendorf, S., and Ewert, U., High energy X-ray imaging technology for the detection of dangerous materials in air freight containers, Technol. Homeland Secur. (HST),2015IEEE Int. Symp., IEEE, 2015, pp. 1–6.

  25. Holden, N.E., Table of the Isotopes, Upton, NY (US): Brookhaven Natl. Lab., 2003, no. BNL-71000-2003-BC.

  26. Nemets, O.F. and Gofman, Yu.V., Spravochnik po yadernoi fizike (Handbook of Nuclear Physics), Kiev: Naukova Dumka, 1975.

  27. Liu, Y., Sowerby, B.D., and Tickner, J.R., Comparison of neutron and high-energy X-ray dual-beam radiography for air cargo inspection, Appl. Radiat. Isot., 2008, vol. 66, no. 4, pp. 463—473.

    Article  CAS  Google Scholar 

  28. Scientific educational cargo vehicle inspection system. URL: http://portal.tpu.ru/departments/laboratory/ rknl/eng/products/iDK

  29. Osipov, S.P., Chakhlov, S.V., Osipov, O.S., Shtein, A.M., and Strugovtsev, D.V., About accuracy of the discrimination parameter estimation for the dual high-energy method, IOP Conf. Ser: Mater. Sci. Eng., IOP Publ., 2015, vol. 81, no. 1, article no. 012082.

    Article  Google Scholar 

  30. Cao, J., Jiang, C.Y., Zhao, Y.F., Yang, Q.W., and Yin, Z.J., A novel X-ray tube spectra reconstruction method based on transmission measurements, Nucl. Sci. Tech., 2016, vol. 27, no. 2.

  31. Mahfouz, M.R., Kuhn, M.J., To, G., and Fathy, A.E., Integration of UWB and wireless pressure mapping in surgical navigation, IEEE Trans. Microwave Theory Tech., 2009, vol. 57, no. 10, pp. 2550–2564.

    Article  Google Scholar 

  32. Dipova, N., Automated strain measurements in uniaxial testing via computer vision, Geotech. Test. J., 2018, vol. 42, no. 4. https://doi.org/10.1520/GTJ20170349

    Article  Google Scholar 

  33. Sommer, M., Jahn, A., and Henniger, J., A new personal dosimetry system for HP (10) and HP (0.07) photon dose based on OSL-dosimetry of beryllium oxide, Radiat. Meas., 2011, vol. 46, no. 12, pp. 1818–1821.

    Article  CAS  Google Scholar 

  34. Hahn, S., Elphic, R., Murphy, T., Hodgson, M., Byrd, R., Longmire, J., and Meier, M., A validation payload for space and atmospheric nuclear event detection, 2002 IEEE Nucl. Sci. Symp. Conf. Rec., IEEE, 2002, vol. 1, pp. 71–77.

    Google Scholar 

  35. Zacher, A.R., A wide-range logarithmic charge digitizer, IEEE Trans. Circuits Syst. I: Fundam. Theory Appl., 1993, vol. 40, no. 5, pp. 307–316.

    Article  Google Scholar 

Download references

Funding

The study was conducted at Tomsk Polytechnic University as part of a grant from the Competitiveness Enhancement Program of Tomsk Polytechnic University and with financial support from PowerScan Ltd Company (China).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. P. Osipov or S. V. Chakhlov.

Additional information

Translated by V. Potapchouck

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osipov, S.P., Usachev, E.Y., Chakhlov, S.V. et al. Limit Capabilities of Identifying Materials by High Dual- and Multi-Energy Methods. Russ J Nondestruct Test 55, 687–699 (2019). https://doi.org/10.1134/S1061830919090055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830919090055

Keywords:

Navigation